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Abstract

It has been known for a while [35, 36, 12] that program transformation
techniques, in particular, program specialization, can be used to prove the
properties of programs automatically. For example, if a program actu-
ally implements (in a given context of use) a constant function sufficiently
powerful and semantics preserving program transformation may reduce the
program to a syntactically trivial “constant” program, pruning unreach-
able branches and proving thereby the property. Viability of such an ap-
proach to verification has been demonstrated in previous works [16, 19, 18]
where it was applied to the verification of parameterized cache coherence
protocols and Petri Nets models [11, 20]. In this paper we further extend
the method and present a case study on its application to the verifica-
tion of a cryptographic protocol. The protocol is modeled by functional
programs at different levels of abstraction and verification via program
specialization is done by using Turchin’s supercompilation method.

Keywords: Program verification, cryptographic protocols, program
specialization, supercompilation, program analysis, program transforma-
tion.

1 Introduction

Progam specialization techniques traditionally have been applied for optimiza-
tion purposes. For example, if in a given program p(x, y) a value of the argument
x is fixed to some x0 then a specialization transformation can be applied to pro-
duce a program qx0

(y) such that for any value of y p(x0, y) = qx0
(y). What is

more, specialization exploits partial knowledge of the input and other syntactical
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structures of the program p to make the specialized program more efficient, e.g.
by pruning the unreachable fragments of code.

But program transformations can also be used for analysis of programs [22]
and more specifically for their verification [14, 19]. In the experiments dis-
cussed below we use a specializer based on Turchin’s supercompilation method
[36, 35, 32, 33, 19, 4] as the program specialization technique. This paper ex-
tends the authors’ parameterized testing method (see [19]) for modeling and
verification of global safety properties of parameterized protocols via supercom-
pilation. The idea of the method is very simple and natural. In order to verify
a safety property of a (parameterized) non-deterministic protocol S the later
is specified as a functional program φ(i, x̄), where input i takes an encoding of
the initial state of S and input x̄ takes an encoding of a sequence of actions of
S. The program returns a state of the protocol after executing the sequence of
actions x̄ starting in the initial state i. Let TP (s) be a testing program which
given a state s checks whether a (safety) property P holds on s (True or False).
Consider a composition TP (ϕS(i, x̄)). This program first simulates the execu-
tion of the protocol and then tests the required property. Now, provided we
have used adequate encodings, the statement “the safety property P holds in
any possible state reachable by the execution of the protocol S” is equivalent to
the statement “the program TP (ϕS(i, x̄)) never returns the value False”. The
general method assumes that a semantics-preserving program transformation
(e.g. supercompilation) is applied to TP (ϕS(i, x̄)) in order to transform it to a
form from which one can easily establish the required property. For example if
the statements of the form “return False;” have been eliminated during the
transformation the required property holds. This approach has shown to be ef-
ficient for the verification of various (classes of) parameterized and infinite-state
protocols and systems, including parameterized cache coherence protocols [19],
Java MetaLock algorithm [17], coverablity for Petri Nets [20, 11]. The simplified
theoretical model of verification via supercompilation approach is presented in
[19] and the completeness of the method for the verification of coverability for
Petri Nets can be found in [11, 20].

In this paper we show how to extend this approach to the verification of
cryptographic protocols. We are interested in development of methods of both
functional modeling of the cryptographic protocols and the capability of super-
compilation (an automated program specialization method) to verify the corre-
sponding program models.

Our case study here is a classical Needham-Schroeder Public Key authentica-
tion protocol [25]. We use the parameterized testing scheme outlined above and
model the nondeterministic protocol in terms of a strict functional programming
language, using an oracle guessing an evaluation path of this computing system.
We supercompile the program model in a context of an initial protocol config-

8



Cryptographic Protocol Verification via Supercompilation Ahmed, Lisitsa, Nemytykh

uration and an unknown evaluation path as well as an intruder behavior. We
hope for simple syntactic (explicit) properties of the resulting program, which
allow us to conclude that the protocol satisfies a security property hidden in the
semantics of the original program specification of the protocol (see above the re-
mark on the “return False;” statement). Otherwise we interactively use the
supercompiler (SCP4 [26, 27, 28]) for searching a possible counterexample (an
attack on the protocol).

The limit on the length of this paper does not allow us to give an introduction
to supercompilation. Here we should only enumerate properties of the method,
which are crucial for the following discussion. The properties are: (1) a super-
compiler tries to prune as many unreachable (in the context of specialization)
program’s branches (and more generally – formally possible evaluation’s paths of
the program being specialized) as it can; (2) in a sense the program is simplified
in the superompilation process, so it becomes more amenable to the analysis.

The paper introducing the main original ideas of supercompilation as a pro-
gram optimization method can be found in [36]: it is a paper written by the
creator of supercompilation – V. F. Turchin. The most complete description of
supercompilation ideas is given by V. F. Turchin in a report [34]. A simplified
version of supercompilation is considered in [33]. See also [19, 27].

This paper assumes the reader has basic knowledge of concepts of functional
programming, pattern matching, term rewriting systems and cryptographic pro-
tocols’ specifications.

The paper is organized as follows. Sect. 2 provides an informal specification
of the Needham-Schroeder public key (NSPK) protocol and the program pre-
sentation language. Sect. 3 introduces the developed basics ideas behind our
functional modeling of the cryptographic protocols. In Sect. 4 these ideas are
instantiated for a program model of NSPK, which is our case study. A verifi-
cation attempt of the NSPK program model is discussed in Sect. 5, including
of generating the classical Lowe attack on NSPK. A program model of a cor-
rected version of NSPK successfully verified by supercompiler SCP4 is described
in Sect. 6. In Sect. 7 we point out another NSPK program model verified by
SCP4. Related work is discussed in Sect. 8. The residual programs generated
by SCP4 have been relegated to appendices [1].

2 Preliminaries

This section deals with specification of the Needham-Schroeder public key
(NSPK) protocol and the presentation language used in the protocol program
model described below.

9
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2.1 The Needham-Schroeder Public Key Protocol

Let us consider the following version of the NSPK authentication protocol [25].
NSPK involves two legal participants Alice (A) and Bob (B) who aim to authen-
ticate each other by sending encrypted and signed messages via an open channel.
The authentication is required even in the presence of an intruder. The intruder
(C) is aware of the communication rules and tries to convince B that he (C) is A,
observing the messages moving in the channel and sometimes replacing them.
I.e. C may intercept a message and, if he is able to read it (e.g. after decryp-
tion), he may compose a fake message based on the read information, otherwise
he may send the original message back in the channel.

We assume that all participants use public-key cryptography, that is every
participant, legal or intruder, has a pair of private and public keys assigned to
him/her. Everyone can use a public key of anyone else to encrypt a message, but
only the holder of the corresponding private key may decrypt such an encrypted
message. We denote the public keys used by the protocol participants as EA, EB,
EC respectively.

Below we denote the clients’ signatures with their names. Because the sig-
natures are constant for a long time (they do not change from one session to
another), additionally, to make the communications more secure the partici-
pants use random unique numbers (nonces) rA, rB, rC in the correspondence.
The numbers depend on the sessions.

Normal (secure) NSPK evaluation (a sequence of steps/messages) maintain-
ing of information protection is as follows:

1. A → B : EB(rA,A) - A initiates a communication session and sends (in
the channel) a nonce rA signed with A and encrypted with the public key
EB. By means of this message A asks for ensuring that he communicates
with B rather than with someone else.

2. B → A : EA(rA,rB) - B, upon receiving the first message from A, decrypts
it with his private key and in response to that sends the received nonce
rA back to A. I.e. B confirms that he can decrypt the first message. In
addition B signs his message with a nonce rB and encrypts it with the key
EA. Now B asks for ensuring that he makes a contact with A rather than
someone else. I.e. a person trying to communicate must know the private
key EA and hence (s)he can read B’s reply.

3. A → B : EB(rB) - A certifies that he can read the message sent by B: he
sends the received nonce rB back to B. This message is encrypted with EB.

4. After the three message exchange above participants B and A assume that
they communicate with each other.
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Upon completion of all the steps above the connection between B and A is es-
tablished. The objective of the protocol session is achieved. Any other messages
received by the legal participants cause concern of an unauthorized access and
interrupting the session. In this case it is said about an attack on the protocol.

The NSPK specification above assumes the probability of guessing the num-
bers rA, rB is zero. Because an intruder may interfere in the communication
between A and B, NSPK is parameterized with both an unknown number of the
messages and the messages themselves. Indeed, the intruder is able to generate
any number of unknown messages. Additionally, the set K of all public keys is
also a NSPK parameter, because the concrete legal participants are unknown in
advance. In the program model of the NSPK protocol below we assume that
A may initiate an execution of the protocol by sending the first request to any
participant whose public key belongs to K. The numbers rA, rB are the param-
eters of a fixed communication session. Other parameters of NSPK’s evolution
are the messages generated by C - as a consequence of guessing or on the basis
of analyzing the messages intercepted from the channel.

The verification objective is to prove that there exist no attacks on the pro-
tocol or otherwise to construct such an attack. What constitutes an attack here
we understand as a session of the protocol has successfully compeleted but at
the same time an intruder took a part in the session.1

Exact specification is embodied into a program model of the protocol and is
presented and discussed in Section 4.

2.2 The Presentation Language

We present our program examples in a variant of a pseudocode for functional
programs while the real supercompilation experiments with the programs were
done in a strict (call by value) functional programming language REFAL [38, 39].
The programs given below are written as strict term rewriting systems based on
pattern matching. The sentences in the programs are ordered from the top to
the bottom to be matched. The data set is a free monoid of concatenation with
an additional unary constructor, which is denoted only with its parentheses (that
is without a name). The colon sign stands for the concatenation. The constant
[] is the unit of the concatenation and may be omitted, others constants c are
identifiers. The monoid of the data may be defined with the following grammar:
d ::= [] | c | d1 : d2 | (d)
Thus a datum is a finite sequence (including the empty sequence). Let v, f
denote a variable and a function name correspondingly, then the monoid of the

1It has turned out that this very conserative definition of tha attack does not lead to the
generation of the spurious attacks on NSPK protocol. This surprising property of NSPK in
the context of our modeling is interesting itself.
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corrresponding terms may be defined as follows:
t ::= [] | c | v | f( args ) | t1 : t2 | (t)
args ::= t | t, args
To be closer to REFAL we use three kinds of variables: s.variables range over
identifiers (e.g. True), e.variables range over the whole data set, while t.variables
range over the data set excluding [].

Examples of identifiers are B2, Message, refused, Ms. Examples of the
variables are s.rA, t.1, e.cls, e.memory, e.A st. I.e. the variable’s names
may be the identifiers or natural numbers.

3 The Principles of Modeling

This section informally explains our basic principles of modeling of the crypto-
graphic protocols with ordered term rewriting systems based on pattern match-
ing. The next section applies the principles to a concrete program model.

Modeling of the dynamic of the protocols. A (parameterized) non-
deterministic protocol S is specified as a functional program φ(i, x̄), where input
i takes an encoding of the initial state of S and input x̄ takes an encoding of a
finite sequence of actions of S. More precisely, the program φ is a term rewriting
system. Given an action x0 and a current state of S, the program φ computes
the following state of S and goes on to the next action. Repeating such steps φ
returns a state of the protocol after executing the whole sequence of the actions
x̄0 starting in the initial state i. These steps are the rewriting steps of the term
rewriting system φ. In the case of cryptographic protocols (similar to NSPK)
the state consists of the open channel’s content and the protocol memory split
into the memories of all participants of S. The open channel contains the only
(current) message.

Privacy policy for the protocol participants’ memory. The protocol
memory is a sequence p1, p2, q3, where pi is the memory of the i-th legal protocol
participant, while q3 is the intruder memory. We encode this sequence with a
term of the following form
Memory:t.A:t.B:e.memory. Here t.A ::= (A:e.A), t.B ::= (B:e.B), while
e.memory ::= (C:e.C) | []. I.e. the intruder part of the memory may be
omitted. The last is just a technical trick: the term (C:e.C) informs the intruder
that the channel contains a message put by himself, while [] (no terms) means
the channel’s message was renewed by someone else.

The protocol specification requires a privacy policy for the memory of A, B

and C. We achieve that by the following programming discipline. Given a partic-
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ipant of the protocol, the participant performs his/her given step of the protocol
with the only term rewriting step. The patterns of the sentences, which can re-
alize the given step, are not allowed to specify the part of the memory belonging
to the other participants not taking part in this step. For example, let the active
participant be B then the following two protocol memory patterns
Memory:t.A:(B:[]):e.memory, Memory:(A:e.A):(B:B2):t.C are allowed,
while the pattern Memory:(A:to:s.EB):(B:B2):t.C is not. The reason is as
follows. The pattern (A:e.A) specifies the name (i.e. A) to whom this mem-
ory part belongs, but it does not disclose any part of the content of A’s memory,
which is e.A. The patterns t.A, t.C, e.memory hide even the names of the cor-
responding participants. The pattern (A:to:s.EB) specifies partly A’s memory,
but that is forbidden for B.

A similar programming discipline based on (lack of) knowledge of encryp-
tion keys guarantees the (in)capability of reading the encrypted messages being
transmitted through the communication channel.

Intruder behavior. According with the general privacy principle described
above the intruder C is not able to spy in the memory of the legal participants.
He cannot decrypt a message if he does not know the key decrypting the message.
C never replaces his own message in the channel. C is able to synthesize messages
from data taken from the pattern (through its variables’ values) of a sentence
corresponding to C, but he cannot split the variables’ values. For example, if the
pattern includes the variables e.xy, t.A, s.rB, then C may produce the term
e.xy t.A e.xy (s.rB), but cannot specify (even partly) the values of these
variables. See Section 4.1 for additional explanations of the intruder behavior
logic.

Tracing. The program model φ may trace some additional information on the
protocol evaluation, leaving it step by step in the program result. Such a trace
may be useful for constructing an attack on the protocol, if any.

In general the actions x̄ may be abstracted whenever the chosen abstraction
together with the channel content and the memory state allow to unambiguously
reconstruct the corresponding action. Additionally the discrete dynamic system
φ may compute some information on properties of the generated states and carry
it to the final result of φ.

4 The Program Model of NSPK

Let us consider the NSPK program model (see Figure 1). It is supposed that
if the protocol started, then the open channel can contain only one message:

13
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sending a next message is replacement of the current message in the channel.
The term Key:s.EB denotes the public key used by A to initiate execution of
the protocol. Information on the messages sent in the channel is stored in the
memory

Memory:(A:e.A st):(B:e.B st):e.C part

The memory is a sequence of the protocol participants’ storages. The infor-
mation kept in a storage is available only to the participant corresponding to
the storage. The storage for the participant e.C part may be empty, in which
case it is denoted by [].

The function mainNSPK defines the input point of the protocol dynamic sys-
tem. In its definition we assume that in any (correct) execution there exist at
least two messages sent via the channel plus the initial message. Thus the se-
quence of the (abstract) messages without the initial message can be represented
as the term Ms:t.x1:t.x2:e.cls.

The initial encrypted message sent by A is represented with s.EB:(rA:A)

where the identifier rA represents a nonce, A is the name of the sender. The
message is encrypted with the public key of an addressee with whom A would
like to initiate the mutual authentication.

The function Loop(Ms:e.cls, e.broadcast, Memory:e.memory) models
the protocol dynamic. Its first argument ranges over the finite sequences of
the messages’ abstracts. A message abstract includes its sender name and
an abstract of the corresponding message (if needed). Loop puts a next
message (e.broadcast) in the channel (the second argument), modifies the
memory and returns a trace of the messages passed over the channel fol-
lowed by a flag. The trace is a sequence of terms of the following form
(s.sender_name : e.ms_info). Below we use the trace for constructing an
attack on NSPK. The flag is connection - the fact of authentication of the legal
participants or refused - the fact of interruption of the current session. Let us
consider the function sentences.

(1): The message sequence is empty. Mutual authentication is not estab-
lished. The negotiation is interrupted.

(2a-2b): The first message of B. This fact is represented both in the first
Loop’s argument and in the memory’s part accessible to B which is empty [].
Notice that the other part of the memory is not available to B because the
pattern Memory:(A:e.A):(B:[]):e.memory does disclose the content neither
of e.A (A’s memory) nor e.memory. The B modifies his part of the memory,
keeping in mind (recording the term B2) that the next his message will be the
second. He traces his current message as a part of the returning result. This
message is a response to the request of A. It confirms the fact that B can decrypt
the message received from A: B’s message contains the nonce s.rA sent by A.

14



Cryptographic Protocol Verification via Supercompilation Ahmed, Lisitsa, Nemytykh

Additionally, the memory is cleaned from possible intruder records. Note that
this removing of the intruder storage is just a technical trick and does not lead
to loss of possible attacks (see the case (5) below for explanations). In the case
(2a), from B’s point of view, all the protocol rules are respected, while in the
case (2b) B suspects an attack and interrupts the session.

mainNSPK( Ms:t.x1:t.x2:e.cls, Key:s.EB ) =

Test( (A:s.EB:(rA:A)): Loop( Ms:t.x1:t.x2:e.cls, Message:s.EB:(rA:A),

Memory:(A:to:s.EB):(B:[])));

/*1.*/

Loop( Ms, e.message, e.memory ) = refused;

/*2a.*/

Loop(Ms:(B:[]):e.cls,Message:EB:(s.rA:A),Memory:(A:e.A):(B:[]):e.memory)

= (B:EA:(s.rA:rB)) :

Loop( Ms:e.cls, Message:EA:(s.rA:rB), Memory:(A:e.A):(B:B2) );

/*2b.*/

Loop( Ms:(B:[]):e.cls, t.message, t.memory ) = refused;

/*3a.*/

Loop( Ms:(A:e.A):e.cls, Message:EA:(rA:s.r),

Memory:(A:to:s.EB):t.B:e.memory )

= (A:s.EB:(s.r)) :

Loop( Ms:e.cls, Message:s.EB:(s.r), Memory:(A:to:s.EB):t.B );

/*3b.*/

Loop( Ms:(A:e.A):e.cls, t.message, t.memory ) = refused;

/*4a.*/

Loop( Ms:(B:B2):e.cls, Message:EB:(rB),

Memory:(A:e.A):(B:B2):e.memory ) = (B:end):connection;

/*4b.*/

Loop( Ms:(B:B2):e.cls, t.message, t.memory ) = refused;

/*5.*/

Loop( Ms:(C:e.xy):e.cls, Message:EC:t.r, Memory:(A:e.A):(B:e.B) )

= (C:e.xy): Loop(Ms:e.cls, Message:e.xy,Memory:(A:e.A):(B:e.B):(C:C1));

/*6.*/

Loop( Ms:(C:e.xy):e.cls, t.message, Memory:(A:e.A):(B:e.B):(C:C1) )

= Loop( Ms:e.cls, t.message, Memory:(A:e.A):(B:e.B):(C:C1) );

Test( connection ) = True;

Test( e.trace : refused ) = refused;

Test( (C:e.C):e.x:connection ) = (C:e.C):e.x:False;

Test( t.x1:e.trace:connection ) = t.x1 : Test( e.trace:connection );

Figure 1: The NSPK program model.

(3a-3b): The second A’s message. A checks the fact that his first message
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was read. That is confirmed with the nonce rA. A traces this message in the
returning result. This A’s response returns the nonce s.r back to the commu-
nication partner. The response is encrypted with the same public key used for
the first A’s message: the key was early stored in the A’s memory. The other
part of the memory is not available to A. Additionally, the memory is cleaned
from possible intruder records (see the case (5) below). In the case (3a), from
A’s point of view, all the protocol rules are respected, while in the case (3b) A

suspects an attack and interrupts the session.

(4a-4b): (4a) The second B’s message: this fact is confirmed with the
memory. B checks the fact that his first message was read. He does that by
means of the nonce rB returned back to him. B decides that the person signed
by A is the A. The authentication is established. (4b) B suspects an attack and
interrupts the session.

(5): The intruder C checks in the memory that the last message sent in the
channel was sent by someone else. That is the memory does not contain records
written by C, which he enters in there and which the legal participants throw out
from the memory (see above). The part of the memory belonging to the legal
participants is not available to C. C knowing the open keys tries to impersonate
a legal participant: by means of guessing a message e.xy and sending it in the
channel. Here e.xy is an arbitrary message (this free variable ranges over the
whole data set), therefore if C can decrypt the intercepted message t.r, then
the message may include any information obtained from t.r. Notice that in
this version of the specification we abstract away capabilities of C and allow him
to send an arbitrary message. As a consequence, the cleaning of the intruder
storage being done by the legal participants in the cases (2) and (3) does not
restrict any possibility of C to generate messages. See further discussion of this
point in the next subsection. Additionally, C records the term C1 in the memory,
which means that this current message is sent by himself rather than someone
else. Otherwise the protocol evolution runs in an infinite loop, in which C should
analyze the message sent by himself.

(6): C checks in the memory that the last message sent in the channel was
sent by himself. If the memory contains the record C1, then C does not replace
the current message in the channel: otherwise the protocol evolution passes in
an infinite loop. This case is the last in the function Loop. That means if
the message was sent by someone else, then the program goes into deadlock
(pattern recognition impossible). Thus we model the NSPK evaluation deadlock
(C cannot decrypt the intercepted message) with the program interpretation
deadlock (abnormal stop).

The function Test checks correctness of a fixed NSPK evolution and if the
concrete message sequence leads to completion of the whole negotiation session,
in which C took a part, then the function returns the message sequence leading
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to the attack on the protocol. The third pattern of the function detects that
the intruder replaced a message in the channel, and therefore the protocol is not
secure.

4.1 On Parameterization of the Intruder Behavior Logic

Modeling of the behavior logic of the intruder C is crucial for detecting an attack
on any crypto-protocol. In our program model the case (6) of the function Loop

is technical: it only transfers the turn of reading/sending a message to the legal
protocol participants. The substantial intruder behavior logic is modeled in the
fifth case. Guessing a message, particularly, may include any subtle analyses
and syntheses of the messages (including their sequence), therefore our model
completely parameterizes the intruder logic. It has a potential advantage that
more concrete models of intruder behaviour may fail to find an attack. Our
model above, being under supercompilation, provides for completely automatic
generation of the intruder logic. On the other hand, potential disadvantage of
fully parameterized intruder behaviour model is that “guessing a message” e.xy

allows generating a message, which might be not relevant at all to the protocol
being considered. That may lead to generation of spurious attacks. E.g. the
intruder may guess a public key, which is not accessible in principle, and may
encrypt (using this key) a message and initiate an attack. Speaking formally,
a protocol is not secure if not only an attack was generated, but the attack is
proven to be realized.

Furthemore, that may be considered as a “potential attack”: if the intruder
might guess something, then he might break the negotiation confidentiality of
the legal protocol participants. Such an attack may also be very interesting
for analyzing the protocols. Below we show that the NSPK logic model chosen
above does not lead to the spurious attacks. As a result of a verification attempt
we will construct the only classical attack [23] on the protocol.

5 A Verification Attempt of the NSPK Program
Model

The NSPK program model P described above terminates on any input data,
returning a result or falling into an abnormal state (pattern recognition impos-
sible). That is because the number of the messages (see the first P’s argument)
taking part in a given session is finite (but unbounded) and is exhausted step by
step. In other words, P is primitive recursive with respect to its first argument.
This important (syntactic) property of P allows us to conclude the following. In
the case the supercompiler SCP4 is able to transform P to a residual program
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P’ such that P’ has simple syntactic properties showing that P’ is identically
true on its domain, then the NSPK program model is secure.

E.g. such a syntactic property, both in REFAL terms and in the presentation
language terms, is the lack of in P’s right-side top-level passive subexpressions
without the identifier False. An expression is said to be top-level passive iff it
does not contain any function call and it is not a part of a function call argument.
If P’ has not such a property, then that may mean both existence of an attack
on NSPK and weakness of the supercompiler. In both cases the program model
P has to be additionally analyzed.

As a result of specialization of our NSPK program model the supercompiler
generates a program P’2 containing two sentences with the identifier False. Let
us consider one of them:

F122((B:B2):e.140, e.142, EB:(rB))

= (A:EC:(rA:A)):(C:EB:(rA:A)):(B:EA:(rA:rB)):

(A:EC:(rB)):e.142:(C:EB:(rB)):(B:end):False;

Its right-side expression is completely passive. The second sentence has the same
property. Thus we are forced to suppose that the program model is not secure
or the supercompiler is not able to solve the verification task. In both cases we
have to continue analyzing the program model.

5.1 Interactive Search for an Attack on NSPK

Now we start an interactive search for attacks on the program model. It is
natural to consider the number of the messages sent in the channel as a working
time measure of NSPK. In our model terms this number is the length of the
sequence e.cls plus 3 (see the term Ms:t.1:t.2:e.cls in the input point in
Figure 1 and Section 4). We will interactively use the supercompiler. We input
the sequence e.cls with a fixed length and unknown members. When the length
equals 1 or 2 the corresponding residual programs are identically true on their
domains. The following input point (ln(e.cls) = 3) given as a supercompilation
task leads to the generation of an attack on NSPK:

mainNSPK( Ms:t.1:t.2:t.3:t.4:t.5, Key:s.EB )

The corresponding residual program can be found in Appendix A in [1]. We
see the only sentence containing False. It is labeled with a comment. False

stays in the completely passive right side. The residual program is a one-step
program: it does not contain formal syntax loops. The sentence we are interested
in is:

2The residual program can be found in [21].
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mainNSPK’( Ms:(C:EB:(rA:A)):(B:[]):(A:e.129):(C:EB:(rB)):(B:B2), Key:EC )

= (A:EC:(rA:A)):(C:EB:(rA:A)):(B:EA:(rA:rB)):(A:EC:(rB))

:(C:EB:(rB)):(B:end):False;

According to the semantics of the result returned by the program model we
conclude that a likely attack on NSPK is the following message sequence

(A:EC:(rA:A)):(C:EB:(rA:A)):(B:EA:(rA:rB)):(A:EC:(rB)):(C:EB:(rB)

):(B:end)

We are writing a likely attack for two reasons: (1) the considered sentence
may be unreachable during interpretation of the residual program P’; (2) the
constructed attack may be spurious (see 4.1). The first doubt may be easily
dissolved: it is a one-step program3, hence the only input data, which may lead
to the sentence, must be matched with this sentence pattern. But the pattern
has no variables, therefore this input data has to be:

Ms:(C:EB:(rA:A)):(B:[]):(A:e.129):(C:EB:(rB)):(B:B2), Key:EC

We input this data both to the residual and to the source program and run
both programs (by the interpreter). In such a way we make sure that both
programs return the right-side expression of the sentence considered, i.e. the
chosen data belongs to the domains of both the residual and the source program.

The second doubt above is canceled with a paper published in 1995 [23]: the
constructed attack is the classical attack detected by G. Lowe. In this “man-
in the-middle” attack the intruder C using an authentication request from a
participant A impersonates A in an authentication exchange with B. The attack
runs as follows.

1. (A:EC:(rA:A)) - A initiates a session with C;

2. (C:EB:(rA:A)) - C receives the first message, decrypts it with his key,
encrypts the result with EB and replaces in the channel the first message
with the changed one;

3. (B:EA:(rA:rB)) - B taking into account that the second message signed
by A sends the current message signed with the nonce rB and encoded with
EA in the channel;

4. (A:EC:(rB)) - A seeing that his previous message successfully decoded
decides that B’ key is really the key used for the first message and sends
(in the channel) confirmation of reading the third message, once again
using the key EC;

3I.e. it is the only rewriting step necessary to produce the program’s result.
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5. (C:EB:(rB))) - C intercepts and decodes the forth message, he sends the
(re)encoded message ensuring B that the last B’s message was read and he
is a legal protocol participant;

6. the technical (B:end) term just means that B receives the fifth message
and falsely decides that C is A.

6 A Corrected Version of NSPK

Let us consider a corrected version of the protocol suggested G. Lowe [23]. The
second step described above (Section 2.1) can be specified more accurately:
B → A : EA(rA,rB,EB). I.e. additionally, B sends his public key EB to A. As
a consequence, at the third step, A may compare the received key with the key
used for encoding his initial message. She interrupts the session if the keys do
not coincide. Now the corresponding cases of the program model (the function
Loop) must be corrected as follows.

...

/*2a.*/

Loop(Ms:(B:[]):e.cls, Message:EB:(s.rA:A),Memory:(A:e.A):(B:[]):e.memory)

= (B:EA:(s.rA:rB:EB)) :

Loop( Ms:e.cls, Message:EA:(s.rA:rB:EB), Memory:(A:e.A):(B:B2) );

...

/*3a.*/

Loop( Ms:(A:e.A):e.cls, Message:EA:(rA:s.r:s.EB),

Memory:(A:to:s.EB):t.B:e.memory )

= (A:s.EB:(s.r)) :

Loop( Ms:e.cls, Message:s.EB:(s.r), Memory:(A:to:s.EB):t.B );

...

The supercompilation result (see Appendix B in [1]) of the corrected program
model P never returns False. Thus we conclude the model P is secure. The
corrected version of NSPK has been successfully verified by the supercompiler
SCP4.

7 Explicit Capabilities Intruder Model

Another version of the NSPK protocol specification in terms of the Refal lan-
guage has been given in the MSc Dissertation of the first author [2] where the
supercompiler SCP4 has been applied for finding an attack on the original pro-
tocol and for verification of the corrected version. The main difference with the
version presented here is that in [2] the capabilities of the intruder have been
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explicitly specified within the program model. That led to much longer spec-
ification which nevertheless was sucessfully analysed by the interactive use of
SCP4. Full details can be found in [2].

8 Related Work and Concluding Remarks

The history of verification of cryptographic protocols spans more than twenty
years. Needham and Schroeder [25] mentioned that security protocols are prone
to extremely subtle errors, and the need for techniques to verify the correctness
of such protocols is great. The work of Dolev and Yao [6] was the first to
address the verification of cryptographic protocols by utilizing a formal model
of the protocols and the environment. Since then the various routes in the
development of the verification techniques have been taken. Model checking
approach, e.g. [24, 23] has been particularly successful in demonstrating the
power of formal methods by discovering the flaws in the protocols by using finite
state abstractions. Theorem proving, both interactive [30] and automated [5]
allowed to approach the verification of parameterized and infinite state protocols.
The technique utilizing declarative logic programming has been developed and
implemented in ProVerif tool [3] which is capable of the efficient automated
verification of large variety of cryptographic protocols. To make it possible a
special modification of the standard Prolog semantics has been implemented.

Another line of work which led to the research presented in this paper is
the development of the verification methods based on program transformation
techniques and in particular on supercompilation.

M. Leuschel with his coauthors [14, 13] were the pioneers who suggested to
apply a program specialization method for verification of various infinite state
computing systems. The systems were modeled in terms of logic programs. The
used method is known as partial deduction. A. Roychoudhury and C.R. Ramakr-
ishnan in [31] have used fold/unfold transformations of logic programs for the
verification of parameterized concurrent systems. F. Fioravanti, A. Pettorossi,
M. Proietti and V. Senni [7, 8] proposed to use constraint logic programs, which
give more powerful means for dealing with infinite sets of states. They also
studied various strategies of generalization used for verification [9].

In [10] G. W. Hamilton described using of his distillation algorithm as a proof
assistant for transformation of programs into a tail recursive form in which some
properties of the programs can be easily verified by the application of inductive
proof rules.

As mentioned above, functional modeling and verification (by supercompila-
tion) of global safety properties of nondeterministic parameterized (i.e. infinite
state) cache coherence protocols was studied by A. Lisitsa and A. Nemytykh
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[16, 19, 15, 17]. A. Lisitsa and A. Nemytykh in [20] and A. Klimov in [11] apply
supercompilation to verification of Petri Nets models.

Modeling of cryptographic protocols is more subtle. The work of A. Ahmed
[2] was the first to address the verification of the cryptographic protocols via
supercompilation using the functional modeling of a variant of the Dolev Yao
model. Antonina Nepeivoda [29] considers modeling and verifying of the ping-
pong cryptographic protocols. Verification of her program models essentially
uses generalization based on Turchin’s relation [37].

In this paper we have presented a method for modeling of cryptographic pro-
tocols by functional programs and their exploration via program optimization.

The method was demonstrated on the Needham-Schroeder public key pro-
tocol. Using the supercompiler SCP4 we have explored the NSPK protocol and
interactively detected the classical attack on the protocol. Then we have auto-
matically verified the corrected version of the protocol. This case study provides
with the guidelines to the design of a semi-decision procedure for the verification
of cryptographic protocols based on supercompilation. The procedure would ei-
ther terminate with the proof of the correctness of a protocol, or generate the
attacks on the protocol, or in the worst case would not terminate, if the protocol
is correct, but supercompiler is not powerful enough to prove that.

The paper length limit does not allow us to provide some details of the
supercompilation technique and we refer the reader to [36, 35, 32, 33, 19, 4].

The fact of the successful using of the completely parameterized intruder
behavior logic in the presented model reflects some properties of the NSPK
protocol. It will be very interesting to describe a class of cryptographic protocols
which can be verified with such an intruder model, using the presented approach
without producing of spurious attacks.

The approach we advocate in this paper is very flexible and due to the use
of the expressive programming language for the specification of the models and
properties can cover the wide spectrum of models - from completely parame-
terized to more definite, such as the Dolev-Yao model and their variants [6, 2].
Exploration of various directions, their formal representation and comparison
with other approaches such as ProVerif is a topic of ongoing and future work.
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1 Introduction

In the last decade formal techniques have received a renewed attention as the
basis of a methodology for increasing the reliability of software artifacts and
reducing the cost of software production. In particular, great efforts have been
made to devise automatic techniques such as software model checking [19], for
verifying the correctness of programs with respect to their specifications.

In many software model checking techniques, the use of constraints has been
very effective both for constructing models of programs and for reasoning about
them [1, 6, 7, 9, 14, 16, 18, 30, 31]. Several kinds of constraints have been
considered, such as equalities and inequalities over booleans, integers, reals, and
finite or infinite trees. By using constraints we can represent in a symbolic,
compact way the (possibly infinite) sets of values computed by programs and, in
general, the sets of states which are reached during program executions. Then,
by using powerful solvers specifically designed for the classes of constraints we
have mentioned above, we can reason about program properties in an efficient
way.

In this paper we consider a simple imperative programming language with in-
teger and array variables and we use Constraint Logic Programming (CLP) [17]
as a metalanguage for representing imperative programs, their executions, and
the properties to be verified. We use constraints consisting of linear equalities
and inequalities over integers. Note, however, that the method presented here is
parametric with respect to the constraint domain which is used. By following an
approach originally presented in [30], a given imperative program prog and its
interpreter are first encoded as a CLP program. Then, the proofs of the prop-
erties of interest about the program prog are sought by analyzing that derived
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CLP program. In order to improve the efficiency of that analysis, it is advis-
able to first compile-away the CLP interpreter of the language in which prog is
written. This is done by specializing the interpreter with respect to the given
program prog using well-known program specialization techniques [20, 30].

In previous papers [7, 12] we have shown that program specialization can
be used not only as a preprocessing step to improve the efficiency of program
analysis, but also as a means of analysis on its own. In this paper, we extend
that approach and we propose a verification method based on more general
unfold/fold transformation rules for CLP programs [4, 10, 34].

Transformation-based verification techniques are very appealing because they
are parametric with respect to both the programming languages in which pro-
grams are written, and the logics in which the properties of interest are specified.
Moreover, since the output of a transformation-based verification method is a
program which is equivalent to the given program with respect to the proper-
ties of interest, we can apply a sequence of transformations, thereby refining the
analysis to the desired degree of precision (see, for instance, [7]).

The specific contributions of this paper are the following. We present a ver-
ification method based on a set of transformation rules which includes the rules
for performing conjunctive definition, conjunctive folding, and goal replacement,
besides the usual rules for unfolding and constraint manipulation which are used
during program specialization. The rules for conjunctive definition and conjunc-
tive folding allow us to introduce and transform new predicates defined in terms
of conjunctions of old predicates, while program specialization can only deal with
new predicates that correspond to specialized versions of exactly one old predi-
cate. The goal replacement rule allows us to replace conjunctions of predicates
and constraints by applying equivalences that hold in the least model of the CLP
program at hand, while program specialization can only replace conjunctions of
constraints.

By using these more powerful definition and folding rules, we extend the
specialization-based verification method in the following two directions: (i) we
verify programs with respect to specifications given by sets of CLP clauses (for
instance, recursively defined relations among program variables), whereas pro-
gram specialization can only deal with specifications given by constraints, and
(ii) we verify programs manipulating arrays and other data structures by apply-
ing equivalences between predicates that axiomatize suitable properties of those
data structures (for instance, the ones deriving from the axiomatization of the
theory of arrays [27]).

The paper is organized as follows. In Section 2 we present our transformation-
based verification method. First, we introduce a simple imperative language and
we describe how correctness properties of imperative programs can be translated
into predicates defined by CLP programs. We also present a general strategy
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for applying the transformation rules to CLP programs, with the objective of
verifying the properties of interest. Next, we present two examples of application
of our verification method. In particular, in Section 3 we show how we deal with
specifications given by recursive CLP clauses, and in Section 4 we show how we
deal with programs which manipulate arrays. Finally, in Section 5 we discuss
the related work which has been recently done in the area of automatic program
verification.

2 The Transformation-Based
Verification Method

We consider an imperative C-like programming language with integer and array
variables, assignments (=), sequential compositions (;), conditionals (if and
if else), while-loops (while), and jumps (goto). A program is a sequence
of (labeled) commands, and in each program there is a unique halt command
which, when executed, causes program termination.

The semantics of our language is defined by a transition relation, denoted =⇒,
between configurations. Each configuration is a pair 〈〈c, δ〉〉 of a command c and
an environment δ. An environment δ is a function that maps: (i) every integer
variable identifier x to its value v, and (ii) every integer array identifier a to a
finite function from the set {0, . . . , dim(a)−1}, where dim(a) is the dimension of
the array a, to the set of the integer numbers. The definition of the relation =⇒
is similar to the ‘small step’ operational semantics given in [32], and is omitted.

Given an imperative program prog , we address the problem of verifying
whether or not, starting from any initial configuration that satisfies the prop-
erty ϕinit , the execution of prog eventually leads to a final configuration that
satisfies the property ϕerror , also called an error configuration. This problem is
formalized by defining an incorrectness triple of the form {{ϕinit}} prog {{ϕerror}},
where ϕinit and ϕerror are encoded by CLP predicates defined by (possibly re-
cursive) clauses. We say that a program prog is incorrect with respect to ϕinit

and ϕerror , whose free variables are assumed to be among z1, . . . , zr, if there
exist environments δinit and δh such that: (i) ϕinit(δinit(z1), . . . , δinit(zr)) holds,
(ii) 〈〈`0 :c0, δinit〉〉 =⇒∗ 〈〈`h :halt, δh〉〉, and (iii) ϕerror (δh(z1), . . . , δh(zr)) holds,
where `0 : c0 is the first labeled command of prog and `h : halt is the unique
halt command of prog . A program is said to be correct with respect to ϕinit

and ϕerror iff it is not incorrect with respect to ϕinit and ϕerror . Note that
this notion of correctness is equivalent to the usual notion of partial correctness
specified by the Hoare triple {ϕinit} prog {¬ϕerror}.

Our verification method is based on the formalization of the notion of pro-
gram incorrectness by using a predicate incorrect defined by a CLP program.

28



Program Verification by CLP Transformation Angelis, Fioravanti, Pettorossi, Proietti

In this paper a CLP program is a finite set of clauses of the form A :- c,B,
where A is an atom, c is a constraint (that is, a possibly empty conjunction
of linear equalities and inequalities over the integers), and B is a goal (that
is, a possibly empty conjunction of atoms). The conjunction c,B is called a
constrained goal. A clause of the form: A :- c is called a constrained fact. We
refer to [17] for other notions of CLP with which the reader might be not familiar.

We translate the problem of checking whether or not the program prog is
incorrect with respect to the properties ϕinit and ϕerror into the problem of
checking whether or not the predicate incorrect is a consequence of the CLP
program T defined by the following clauses:

incorrect :- initConf(X), reach(X).

reach(X) :- tr(X, X1), reach(X1).

reach(X) :- errorConf(X).

together with the clauses for the predicates initConf(X), errorConf(X), and
tr(X, X1). They are defined as follows: (i) initConf(X) encodes an initial config-
uration satisfying the property ϕinit , (ii) errorConf(X) encodes an error config-
uration satisfying the property ϕerror , and (iii) tr(X, X1) encodes the transition
relation =⇒. (Note that in order to define initConf(X), errorConf(X), and
tr(X, X1) and, in particular, to represent operations over the integer variables
and the elements of arrays, we need constraints.) The predicate reach(X) holds
if an error configuration Y such that errorConf(Y) holds, can be reached from
the configuration X.

The imperative program prog is correct with respect to the properties ϕinit

and ϕerror iff incorrect 6∈M(T ), where M(T ) denotes the least model of pro-
gram T [17]. Due to the presence of integer variables and array variables, M(T )
is in general an infinite model, and both the bottom-up and top-down evaluation
of the query incorrect may not terminate. In order to deal with this difficulty,
we propose an approach to program verification which is symbolic and, by using
program transformations, allows us to avoid the exhaustive exploration of the
possibly infinite space of reachable configurations.

Our verification method consists in applying to program T a sequence of pro-
gram transformations that preserve the least model M(T ) [10]. In particular,
we apply the following transformation rules, collectively called unfold/fold rules:
(i) (conjunctive) definition, (ii) unfolding, (iii) goal replacement, (iv) clause re-
moval, and (v) (conjunctive) folding. Our verification method is made out of the
following two steps.

Step (A): Removal of the Interpreter. Program T is specialized with respect to the
given prog (on which tr depends), initConf, and errorConf, thereby deriving a
new program T1 such that: (i) incorrect ∈M(T ) iff incorrect ∈M(T1), and
(ii) tr does not occur explicitly in T1 (in this sense we say that the interpreter
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is removed or compiled-away).

Step (B): Propagation of the Initial and Error Properties. By applying a sequence
of unfold/fold transformation rules, the CLP program T1 is transformed into a
new CLP program T2 such that incorrect holds in M(T2) iff prog is incorrect
with respect to the given initial and error properties. The objective of Step (B)
is to propagate the initial and the error properties so as to derive a program T2
where the predicate incorrect is defined by either (i) the fact ‘incorrect.’ (in
which case prog is incorrect), or (ii) the empty set of clauses (in which case prog
is correct). In the case where neither (i) nor (ii) holds, that is, in program T2 the
predicate incorrect is defined by a non-empty set of clauses not containing the
fact ‘incorrect.’, we cannot conclude anything about the correctness of prog
and, similarly to what has been proposed in [7], we iterate Step (B) in the hope of
deriving a program where either (i) or (ii) holds. Obviously, due to undecidability
limitations, it may be the case that we never get a program where either (i) or (ii)
holds.

Steps (A) and (B) are both instances of the Transform strategy outlined in
Figure 1 below.
In particular, the application of the Transform strategy for performing Step (A)
coincides with the fully automatic specialization strategy presented in [7]. In
the Transform strategy we make use of the following rules, where P is the input
CLP program, and Defs is a set of clauses, called definition clauses, constructed
as we indicate in that strategy.

Definition Rule. By this rule we introduce a clause of the form newp(X) :- c,G,
where newp is a new predicate symbol, X is a tuple of variables occurring in (c,G),
c is a constraint, and G is a non-empty conjunction of atoms.

Unfolding Rule. Given a clause C of the form H :- c,L,A,R, where H and A are
atoms, c is a constraint, and L and R are (possibly empty) conjunctions of atoms,
let us consider the set {Ki :- ci,Bi | i = 1, . . . ,m} made out of the (renamed
apart) clauses of P such that, for i=1, . . . ,m, A is unifiable with Ki via the most
general unifier ϑi and (c,ci)ϑi is satisfiable (thus, the unfolding rule performs
some constraint solving operations). By unfolding C w.r.t. A using P , we derive
the set {(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . ,m} of clauses.

Goal Replacement Rule. If a constrained goal c1, G1 occurs in the body of a
clause C, and M(P ) |= ∀ (c1, G1 ↔ c2, G2), then we derive a new clause D by
replacing c1, G1 by c2, G2 in the body of C.

The equivalences which are needed for goal replacements are called laws
and their validity in M(P ) can be proved once and for all, before applying the
Transform strategy.

Folding Rule. Given a clause E of the form: H :- e, L, Q, R and a clause D in
Defs of the form K :- d, D such that: (i) for some substitution ϑ, Q = Dϑ, and
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Input : Program P .
Output : Program TransfP such that incorrect∈M(P )

iff incorrect∈M(TransfP).

Initialization:
TransfP := ∅; InDefs := {incorrect:- c, G}; Defs := InDefs;

while in InDefs there is a clause C do

Unfolding: Apply the unfolding rule at least once, and derive from C a
set U(C) of clauses;

Goal Replacement: Apply a sequence of goal replacements, and derive
from U(C) a set R(C) of clauses;

Clause Removal: Remove from R(C) all clauses whose body contains an
unsatisfiable constraint;

Definition&Folding: Introduce a (possibly empty) set NewDefs of new
predicate definitions and add them to Defs and to InDefs;
Fold the clauses in R(C) different from constrained facts by using the clauses
in Defs, and derive a set F(C) of clauses;

InDefs := InDefs− {C}; TransfP := TransfP ∪ F(C);

end-while;

Removal of Useless Clauses:
Remove from TransfP all clauses whose head predicate is useless.

Figure 1: The Transform strategy.

(ii) ∀ (e→dϑ) holds, then by folding E using D we derive H :- e, L, Kϑ, R.

Removal of Useless Clauses. The set of useless predicates in a given program Q
is the greatest set U of predicates occurring in Q such that p is in U iff every
clause with head predicate p is of the form p(X) :- c, G1, q(Y), G2, for some q in
U . A clause in a program Q is useless if the predicate of its head is useless in Q.

The termination of the Transform strategy is guaranteed by suitable tech-
niques for controlling the unfolding and the introduction of new predicates. We
refer to [24] for a survey of techniques which ensure the finiteness of unfolding.
The introduction of new predicates is controlled by applying generalization op-
erators based on various notions, such as widening, convex hull, most specific
generalization, and well-quasi ordering, which have been proposed for analyzing
and transforming CLP programs (see, for instance, [6, 8, 13, 29]).

The correctness of the strategy with respect to the least model semantics
directly follows from the fact that the application of the transformation rules
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complies with some suitable conditions that guarantee the preservation of that
model [10].

Theorem 1. (Termination and Correctness of the Transform strategy) (i) The
Transform strategy terminates. (ii) Let program TransfP be the output of the
Transform strategy applied on the input program P . Then, incorrect∈M(P)
iff incorrect∈M(TransfP).

3 Verification of Recursively Defined Properties

In this section we will show, through an example, that our verification method
can be used when the initial properties and the error properties are specified
by (possibly recursive) CLP clauses, rather than by constraints only (as done,
for instance, in [7]). In order to deal with that kind of properties, during the
Definition&Folding phase of the Transform strategy, we allow ourselves to
introduce new predicates which are defined by clauses of the form: Newp :- c, G,
where Newp is an atom with a new predicate symbol, c is a constraint, and G is a
conjunction of one or more atoms. This kind of predicate definitions allows us to
perform program verifications that cannot be done by the technique presented
in [7], where the goal G is assumed to be a single atom.

Let us consider the following program GCD that computes the greatest com-
mon divisor z of two positive integers m and n, denoted gcd(m,n, z).

GCD : `0: x = m ;
`1: y = n ;
`2: while (x 6= y) { if (x > y) x=x−y ; else y=y−x ; } ;
`3: z = x ;
`h: halt

We also consider the incorrectness triple {{ϕinit(m,n)}}GCD {{ϕerror (m,n, z)}},
where:
(i) ϕinit(m,n) is m≥1 ∧∧n≥1, and (ii) ϕerror (m,n, z) is ∃ d (gcd(m,n, d) ∧∧ d 6=z).
These properties ϕinit and ϕerror are defined by the following CLP clauses 1 and
2–5, respectively:

1. phiInit(M, N) :- M≥1, N≥1.
2. phiError(M, N, Z) :- gcd(M, N, D), D 6=Z.
3. gcd(X, Y, D) :- X>Y, X1=X−Y, gcd(X1, Y, D).
4. gcd(X, Y, D) :- X<Y, Y1=Y−X, gcd(X, Y1, D).
5. gcd(X, Y, D) :- X=Y, Y=D.

The predicates initConf and errorConf specifying the initial and the error
configurations, respectively, are defined by the following clauses:
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6. initConf(cf(cmd(0, asgn(int(x), int(m))),
[[int(m), M], [int(n), N], [int(x), X], [int(y), Y], [int(z), Z]])) :- phiInit(M, N).

7. errorConf(cf(cmd(h, halt),

[[int(m), M], [int(n), N], [int(x), X], [int(y), Y], [int(z), Z]])) :- phiError(M, N, Z).

Thus, the CLP program encoding the given incorrectness triple consists of clauses
1–7 above, together with the clauses defining the predicates incorrect, reach,
and tr.

Now we perform Step (A) of our verification method, which consists in the
removal of the interpreter, and we derive the following CLP program:

8. incorrect :- M≥1, N≥1, X=M, Y=N, new1(M, N, X, Y, Z).
9. new1(M, N, X, Y, Z) :- X>Y, X1=X−Y, new1(M, N, X1, Y, Z).

10. new1(M, N, X, Y, Z) :- X<Y, Y1=Y−X, new1(M, N, X, Y1, Z).
11. new1(M, N, X, Y, Z) :- X=Y, Z=X, Z 6=D, gcd(M, N, D).

By moving the constrained atom ‘Z 6=D, gcd(M, N, D)’ from the body of clause 11
to the body of clause 8, we can rewrite clauses 8 and 11 as follows (this rewriting
is correct because in clauses 9 and 10 the predicate new1 modifies neither the
value of M nor the value of N):

8r. incorrect :- M≥1,N≥1, X=M, Y=N, Z 6=D, gcd(M, N, D), new1(M, N, X, Y, Z).
11r. new1(M, N, X, Y, Z) :- X=Y, Z=X.

Note that we could avoid performing the above rewriting and obtain a similar
program where the constraints characterizing the initial and the error properties
occur in the same clause by starting our derivation from a more general definition
of the reachability relation. However, an in-depth analysis of this variant of our
verification method is beyond the scope of this paper.

Now we will perform Step (B) of the verification method by applying the
Transform strategy to the derived program consisting of clauses {3, 4, 5, 8r, 9, 10,
11r}. Initially, we have that the sets InDefs and Defs of definition clauses are
both equal to {8r}.
Unfolding. We start off by unfolding clause 8r w.r.t. the atom
new1(M, N, X, Y, Z), and we get:

12. incorrect :- M≥1, N≥1, X=M, Y=N, X>Y, X1=X−Y, Z 6=D,
gcd(M, N, D), new1(M, N, X1, Y, Z).

13. incorrect :- M≥1, N≥1, X=M, Y=N, X<Y, Y1=Y−X, Z 6=D,
gcd(M, N, D), new1(M, N, X, Y1, Z).

14. incorrect :- M≥1, N≥1, X=M, Y=N, X=Y, Z=X, Z 6=D, gcd(M, N, D).

By unfolding clauses 12, 13, and 14 w.r.t. the atom gcd(M, N, D), we derive:
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15. incorrect :- M≥1, N≥1, M>N, X1=M−N, Z 6=D,
gcd(X1, N, D), new1(M, N, X1, N, Z).

16. incorrect :- M≥1, N≥1, M<N, Y1=N−M, Z 6=D,
gcd(M, Y1, D), new1(M, N, M, Y1, Z).

(The unfolding of clause 14 produces the empty set of clauses because the con-
straint ‘X=M, Z=X, Z 6=D, M=D’ is unsatisfiable.) The Goal Replacement and
Clause Removal phases leave the set of clauses produced by the Unfolding
phase unchanged, because no laws are available for the predicate gcd.

Definitions&Folding. In order to fold clauses 15 and 16, we perform a
generalization step and we introduce a new predicate defined by the following
clause:

17. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, Z 6=D, gcd(X, Y, D), new1(M, N, X, Y, Z).

The body of this clause 17 is the most specific generalization of the bodies of
clause 8r (which is the only clause in Defs), and clauses 15 and 16 (which are the
clauses to be folded). Now, clauses 15 and 16 can be folded by using clause 17,
thereby deriving:

18. incorrect :- M≥1, N≥1, M>N, X1=M−N, Z 6=D, new2(M, N, X1, N, Z, D).

19. incorrect :- M≥1, N≥1, M<N, Y1=N−M, Z 6=D, new2(M, N, M, Y1, Z, D).

Clause 17 defining the new predicate new2 is added to Defs and InDefs and,
since the latter set is not empty, we perform a new iteration of the while-loop
body of the Transform strategy.

Unfolding. By unfolding clause 17 w.r.t. new1(M,N,X,Y,Z) and then unfolding
the resulting clauses w.r.t. gcd(X,Y,Z), we derive:

20. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X>Y, X1=X−Y, Z 6=D,
gcd(X1, Y, D), new1(M, N, X1, Y, Z).

21. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X<Y, Y1=Y−X, Z 6=D,
gcd(X, Y1, D), new1(M, N, X, Y1, Z).

Definition&Folding. Clauses 20 and 21 can be folded by using clause 17,
and we derive:

22. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X>Y, X1=X−Y, Z 6=D, new2(M, N, X1, Y, Z).

23. new2(M, N, X, Y, Z, D) :- M≥1, N≥1, X<Y, Y1=Y−X, Z 6=D, new2(M, N, X, Y1, Z).

No new predicate definition is introduced, and the Transform strategy exits the
while-loop. The final program TransfP is the set {18, 19, 22, 23} of clauses, which
contains no constrained facts. Hence both predicates incorrect and new2 are
useless and all clauses of TransfP can be removed. Thus, the Transform strategy
terminates with TransfP=∅ and we conclude that the imperative program GCD
is correct w.r.t. the given initial and error properties.
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4 Verification of Array Programs

In this section we apply our verification method to the following program Ar-
rayMax which computes the maximal element of an array:

ArrayMax : `0 : while (i<n) { if (a[i] > max) max = a[i];
i = i+1; };

`h : halt

We consider the following incorrectness triple:
{{ϕinit(i,n,a,max)}} ArrayMax {{ϕerror (n,a,max)}} where: (i) ϕinit(i,n,a,max)
is i = 0 ∧∧ n = dim(a) ∧∧ n ≥ 1 ∧∧ max = a[i], and (ii) ϕerror (n,a,max)
is ∃k (0≤k<n ∧∧ a[k]>max ).

First, we construct a CLP program T which encodes the above incorrectness
triple, similarly to what has been done in Section 3. The predicates initConf(X)
and errorConf(X) specifying the initial and the error configurations, respec-
tively, are defined by the following clauses:

1. initConf(cf(cmd(0, asgn(int(x), int(0))),
[[int(i), I], [int(n), N], [array(a), (A, N)], [int(max), Max]]))

:- phiInit(I, N, A, Max).
2. errorConf(cf(cmd(h, halt),

[[int(i), I], [int(n), N], [array(a), (A, N)], [int(max), Max]]))
:- phiError(N, A, Max).

3. phiInit(I, N, A, Max) :- I=0, N≥1, read((A, N), I, Max).
4. phiError(N, A, Max) :- K≥0, N>K, Z>Max, read((A, N), K, Z).

Now we start off by applying Step (A) of our verification method which consists
in the removal of the interpreter. From program T we obtain the following
program T1:

5. incorrect :- I=0, N≥1, read((A, N), I, Max), new1(I, N, A, Max).
6. new1(I, N, A, Max) :- I1=I+1, I<N, I≥0, M>Max,

read((A, N), I, M), new1(I1, N, A, M).
7. new1(I, N, A, Max) :- I1=I+1, I<N, I≥0, M≤Max,

read((A, N), I, M), new1(I1, N, A, Max).
8. new1(I, N, A, Max) :- I≥N, K≥0, N>K, Z>Max, read((A, N), K, Z).

As indicated in [7], in order to propagate the error property, we ‘reverse’ the
derived program T1 and we get the following program T1rev:

rev1. incorrect :- b(U), r2(U).
rev2. r2(V) :- trans(U, V), r2(U).
rev3. r2(U) :- a(U).

where the predicates a, b, and trans are defined as follows:

s4. a([new1, I, N, A, Max]) :- I=0, N≥1, read((A, N), I, Max)
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s5. trans([new1, I, N, A, Max], [new1, I1, N, A, M]) :-

I1=I+1, I<N, I≥0, M>Max, read((A, N), I, M).
s6. trans([new1, I, N, A, Max], [new1, I1, N, A, Max]) :-

I1=I+1, I<N, I≥0, M≤Max, read((A, N), I, M).
s7. b([new1, I, N, A, Max]) :- I≥N, K≥0, K<N, Z>Max, read((A, N), K, Z).

The transformation from T1 to T1rev is correct in the sense that incorrect∈
M(T1) iff incorrect ∈M(T1rev). This equivalence holds because: (i) in pro-
gram T1 the predicate incorrect is defined in terms of the predicate new1 that
encodes the reachability relation from an error configuration to an initial config-
uration, and (ii) in program T1rev the predicate incorrect is defined in terms
of the predicate r2 that also encodes the reachability relation, but this time the
encoding is ‘in the reversed direction’, that is, from an initial configuration to
an error configuration.

Now let us apply Step (B) of our verification method starting from the pro-
gram T1rev.

Unfolding. First we unfold clause rev1 w.r.t. the atom b(U), and we get:

9. incorrect :- I≥N, K≥0, K<N, Z>Max,
read((A, N), K, Z), r2([new1, I, N, A, Max]).

Neither Goal Replacement nor Clause Removal is applied.

Definition&Folding. In order to fold clause 9 we introduce the following
clause:

10. new2(I, N, A, Max, K, Z) :- I≥N, K≥0, K<N, Z>Max,
read((A,N), K, Z), r2([new1, I, N, A, Max]).

By folding clause 9 using clause 10, we get:

11. incorrect :- I≥N, K≥0, K<N, Z>Max, new2(I, N, A, Max, K, Z).

Now we proceed by performing a second iteration of the body of the while-loop of
the Transform strategy because InDefs is not empty (indeed, clause 10 belongs
to InDefs).

Unfolding. After some unfoldings from clause 10 we get the following clauses:

12. new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M>Max, Z>M,
read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

13. new2(I1, N, A, Max, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M≤Max, Z>Max,
read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

Goal Replacement. We use the following law which is a consequence of the
fact that arrays are finite functions:

(GR) read((A, N), K, Z), read((A, N), I, M) ↔
(K=I, Z=M, read((A, N), K, Z))∨(K 6=I, read((A, N), K, Z), read((A, N), I, M))
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Thus, (i) we replace the conjunction of atoms ‘read((A, N), K, Z), read((A, N), I, M)’
occurring in the body of clause 12 by the right hand side of law (GR), and then
(ii) we split the derived clause with disjunctive body into the following two
clauses, each of which corresponds to a disjunct of the right hand side of (GR).
We get the following clauses:

12.1 new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M>Max, Z>M,

K=I, M=Z, read((A, N), K, Z), r2([new1, I, N, A, Max]).

12.2 new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I1, M>Max, Z>M,

K 6=I, read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

Clause Removal. The constraint ‘Z>M, M=Z’ in the body of clause 12.1 is
unsatisfiable. Hence, this clause is removed from TranfP. By simplifying the
constraints in clause 12.2 we get:

14. new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M>Max, Z>M,

read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

By applying similar goal replacements and clause removals, from clause 13 we
get:

15. new2(I1, N, A, Max, K, Z) :- I1≤I+1, N=I1, K≥0, K<I, M≤Max, Z>Max,

read((A, N), K, Z), read((A, N), I, M), r2([new1, I, N, A, Max]).

Definition&Fold. In order to fold clause 14, we introduce the following
definition:

16. new3(I, N, A, Max, K, Z) :- K≥0, K<N, K<I, Z>Max,
read((A, N), K, Z)), r2([new1, I, N, A, Max]).

Clause 16 is obtained from clauses 10 and 14 by applying a generalization op-
erator called WidenSum [13], which is a variant of the classical widening opera-
tor [5]. Clause 16 can be used also for folding clause 15, and by folding clauses 14
and 15 using clause 16, we get:

17. new2(I1, N, A, Max, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M>Max, Z>M,

read((A, N), I, M), new3(I, N, A, Max, K, Z).

18. new2(I1, N, A, M, K, Z) :- I1=I+1, N=I1, K≥0, K<I, M≤Max, Z>Max,

read((A, N), I, M), new3(I, N, A, Max, K, Z).

Now we perform the third iteration of the body of the while-loop of the strategy.
After some unfolding, goal replacement, clause removal, and folding steps, from
clause 16 we get:

19. new3(I1, N, A, M, K, Z) :- I1=I+1, K≥0, K+1<I1, N≥I1, M>Max, Z>M,

read((A, N), I, M), new3(I, N, A, Max, K, Z).

20. new3(I1, N, A, Max, K, Z) :- I1=I+1, K≥0, K+1<I1, N≥I1, M≤Max,
Z>Max, read((A, N), I, M), new3(I, N, A, Max, K, Z).
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Since we did not introduce any new definition, and no clause remains to be pro-
cessed (indeed, the set InDefs of definitions is empty), the Transform strategy ex-
its the while-loop and we get the program consisting of the set {11, 17, 18, 19, 20}
of clauses.

Since no clause in this set is a constrained fact, by the final phase of removing
the useless clauses we get a final program consisting of the empty set of clauses.
Thus, the program ArrayMax is correct with respect to the given ϕinit and ϕerror

properties.

5 Related Work and Conclusions

The verification method presented in this paper is an extension of the one in-
troduced in [7], where Constraint Logic Programming (CLP) and iterated spe-
cialization have been used to define a general verification framework that is
parametric with respect to the programming language and the logic used for
specifying the correctness properties. The main novelties of this paper are the
following ones: (i) we have considered imperative programs acting on integer
variables as well as array variables, and (ii) we have allowed a more expres-
sive specification language, in which one can write properties about elements of
arrays and, in general, elements of complex data structures.

In order to deal with this more general setting, we have defined the oper-
ational semantics of array manipulation, and we have also considered powerful
transformation rules, such as conjunctive definition, conjunctive folding, and
goal replacement. These transformation rules together with some strategies for
guiding their application, have been implemented in the MAP transformation
system [25], so that the proofs of program correctness have been performed in a
semi-automatic way.

The use of constraint-based techniques for program verification is not novel.
Indeed, CLP programs have been successfully applied to perform model check-
ing of both finite and infinite state systems [9, 11, 13] because through CLP
programs one can express in a simple manner both (i) the symbolic execu-
tions of imperative programs and (ii) the invariants which hold during their
executions. Moreover, there are powerful CLP-based tools, such as ARMC [31],
TRACER [18], and HSF [16], that can be used for performing model checking
of imperative programs. These tools are fully automatic, but they are appli-
cable to classes of programs and properties that are much more limited than
those considered in this paper. We have shown in [7] that, by focusing on ver-
ification tasks similar to those considered by ARMC, TRACER, and HSF, we
can design a fully automatic, transformation-based verification technique whose
effectiveness is competitive to the one of the above mentioned tools.

Our rule-based program transformation technique is also related to conjunc-

38



Program Verification by CLP Transformation Angelis, Fioravanti, Pettorossi, Proietti

tive partial deduction (CPD) [8], a technique for the specialization of logic pro-
grams with respect to conjunctions of atoms. There are, however, some substan-
tial differences between CPD and the approach we have presented here. First,
CPD is not able to specialize logic programs with constraints and, thus, it can-
not be used to prove the correctness of the GCD program where the role of
constraints is crucial. Indeed, using the ECCE conjunctive partial deduction
system [23] for specializing the program consisting of clauses {3, 4, 5, 8r, 9,
10, 11r} with respect to the query incorrect, we obtain a residual program
where the predicate incorrect is not useless. Thus, we cannot conclude that
the atom incorrect does not belong to the least model of the program, and thus
we cannot conclude that the program is correct. One more difference between
CPD and our technique is that we may use goal replacement rules which allow
us to evaluate terms over domain-specific theories. In particular, we can apply
the goal replacement rules using well-developed theories for data structures like
arrays, lists, heaps and sets (see [3, 26, 15, 2, 33, 36] for some formalizations of
these theories).

An alternative, systemic approach to program transformation is supercom-
pilation [35], which considers programs as machines. A supercompiler runs a
program and, while it observes its behavior, produces an equivalent program
without performing stepwise transformations of the original program.

The verification method presented in this paper is also related to several
other methods for verifying properties of imperative programs acting on arrays.
Those methods use techniques based on abstract interpretation, theorem proving
and, in particular, Satisfiability Modulo Theory (see, for instance, [28, 21, 22]).

The application of the powerful transformation rules we have considered in
this paper enables the verification of a larger class of properties, but it does not
entirely fit into the automated strategy used in [7]. In the future we intend to
consider the issue of designing fully mechanizable strategies for guiding the ap-
plication of our program transformation rules. In particular, we want to study
the problem of devising suitable unfolding strategies and generalization opera-
tors, by adapting the techniques already developed for program transformation.
We also envisage that the application of the laws used by the goal replacement
rule can be automated by importing in our framework the techniques used in
the fields of Theorem Proving and Term Rewriting. For some specific theories
we could also apply the goal replacement rule by exploiting the results obtained
by external theorem provers or Satisfiability Modulo Theory solvers.

We also plan to address the issue of proving correctness of programs acting
on dynamic data structures such as lists or heaps, looking for a set of suitable
goal replacement laws which axiomatize those structures.
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Abstract

Ranking functions are a tool successfully used in termination analysis,
complexity analysis, and program parallelization. Among the different
types of ranking functions and approaches to finding them, this talk will
concentrate on functions that are found by linear programming techniques.
The setting is that of a loop that has been pre-abstracted so that it is
described by linear constraints over a finite set of numeric variables. I
will review results (more or less recent) regarding the search for ranking
functions which are either linear or lexicographic-linear.

1 Ranking Functions

Consider a program, viewed abstractly as a “single step” relation ` mapping
a state s to the next state s′. Thus a computation of the program is a chain
s0 ` s1 ` s2 ` . . . . In termination analysis, we wish to prove that there are
no infinite chains. The ranking function method is to find a function ρ that
maps program states into a well-founded ordered set W , such that ρ(s) > ρ(s′)
whenever s ` s′. Well-founded orders have no infinite strictly-descending chains,
so all computations must be finite. In practice, the granularity of the “next step”
relation may vary. In many applications, the step in question represents a single
application of a loop’s body.

The uses of a ranking function are several. Termination per se is a ba-
sic concern in program verification. Secondly, in program transformation, one
wants to ensure that generated code does not breach termination properties,
and moreover, that the transformation process itself (e.g., a partial evaluation)
is terminating. When the co-domain of the ranking function is the non-negative
integers, the function’s value on entrance to the loop bounds the number of loop
iterations. Thus, such ranking functions are useful in time-complexity analy-
sis [1, 20]. More complex ranking functions, in particular, lexicographic, can
also be used for this purpose [3]. An estimate of the running time of a program
(or just one loop) can be used in several program transformation tasks, such
as optimization and parallelization. Some of the techniques mentioned below
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have been developed for loop parallelization, concurrently or even before their
adoption in termination analysis [16, 17].

The main sources for more details on results mentioned in this talk are [4]
which summarizes several results on linear ranking functions, [3] on lexicographic
ranking functions, and, for recent results, my joint work with Samir Genaim
[5, 6].

2 Program Representation

Very often, to generate ranking functions, the semantics of the loop is repre-
sented (possibly over-approximated) by linear constraints. A single-path linear-
constraint loop (SLC for short) over variables x1, . . . , xn has the form

while (Bx ≤ b) do A

(
x
x′

)
≤ c (1)

where x and x′ are column vectors, and for some p, q > 0, B ∈ Qp×n, A ∈ Qq×2n,
b ∈ Qp, c ∈ Qq. Note that the coefficients are rationals. The loop variables
range over the integers or over the rationals1. For notational convenience, we let
x′′ stand for

(
x
x′
)
. In (1), the constraint Bx ≤ b is the loop guard, and ax′′ ≤ c

is the loop update. A case of importance is deterministic linear update, which
can be expressed as x′ = A′x + c′ for A′, c′ of appropriate dimensions.

The transition relation of an SLC loop is a convex polyhedron in Q2n, usually
denoted by Q (for definitions of convex polyhedra and their essential properties,
see [22]).

Whereas the loop update above is a conjunction of inequalities, a multipath
linear-constraint loop (MLC for short) is described by a disjunction of such
conjunctions. It is written as

loop
k∨

i=1

[
Bix ≤ bi ∧ Ai

(
x
x′

)
≤ ci

]
(2)

Or (which amounts to the same) as a list Q1, . . . ,Qk of transition polyhedra.
The MLC form more faithfully represents loops that have a body which is not
straight-line but involves branching, or where a non-linear operation has been
abstracted to a disjunction of linear constraints.

A third form of program representation, generalizing MLC loops, is a control-
flow graph (CFG) annotated with linear constraints on its arcs, as used in [3]
(and, with somewhat different terminology, in [18, 23]). Generally speaking, one

1assuming that the variables range over the reals makes no difference from the rational case
in the problems considered here.
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may say that this form is used when a whole program module is translated to a
constraint representation before calling the termination algorithm (examples of
tools that has this flow are Julia [24] for Java bytecode programs, Termilog [15]
and Terminweb [10] for Prolog). On the other hand, in a tool such as Termi-
nator [14], only SLC loops are used: basically, the tool looks for potentially
non-terminating cycles, and applies the ranking-function generation algorithm
to one at a time. COSTA [2] handles one MLC loop at a time. In the next two
sections, we concentrate on SLC and MLC loops.

3 Linear Ranking Functions

A linear ranking function (LRF ) has the form ρ(x) = ~λ · x + λ0, with (λ0, ~λ) ∈
Qn+1, and is required to satisfy: if x ` x′, then ρ(x) ≥ ρ(x′) + 1 and ρ(x) ≥ 0.
Written explicitly, the conditions are:

~λ · x + λ0 ≥ 0 (3)

~λ · (x− x′) ≥ 1 (4)

In general, the co-domain of ρ will be Q, but to justify its use as a termination
proof, one can convert it to a function with co-domain ω, namely 1+max(ρ(x), 0).

The decision problem—does a LRF exist for a given linear-constraint loop?
Will be denoted by either LinRF(Q) or LinRF(Z), depending on whether the
variables are allowed to assume any rational value satisfying the constraints, or
just integer ones. To the problem of computing an explicit representation of the
ranking function, if one exists, we refer as the synthesis problem.

THEOREM 3.1. LinRF(Q) ∈ PTIME, and LRF synthesis can be done in
polynomial time, for both SLC and MLC loops.

This is perhaps the best-known result in this area. This result is based on us-
ing Farkas’ lemma to transform the search for a LRF into a linear programming
problem. Such a solution has been found by multiple researchers in different
places and times and in some alternative versions: Sohn and van Gelder [23] did
it (for MLC loops, restricted to non-negative integers) in termination analysis
of logic programs; Feautrier [16], for MLC loops, for scheduling parallel compu-
tations; Podelski and Rybalchenko [21], for SLC loops, in termination analysis
of imperative programs; finally, Mesnard and Serebrenik [18] extended Sohn and
van Gelder’s solution to the rationals. A related technique, in [11], is based on
similar considerations but is not polynomial-time.

The fact that this solution is incomplete when the true domain of the vari-
ables is Z is illustrated by examples of loops which terminate (and have a LRF )
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over the integers, whereas over the rationals they are not even terminating. One
such loop is

while (x2 − x1 ≤ 0, x1 + x2 ≥ 1) do
x′2 = x2 − 2x1 + 1, x′1 = x1

(5)

This discrepancy has been noted, for example in [9, 13, 16]; the latter two
point out that the discrepancy disappears if all polyhedra in the program are
integral. An integral polyhedron is equal to the convex hull of its integer points
[22]. The reason that this works is, intuitively, convexity : a function that satisfies
conditions (3,4) for a given set V of points x′′ also satisfies them throughout the
covex hull of V . Hence, a complete and sound, but unfortunately exponential,
algorithm to decide LinRF(Z) is to compute the integer hull of Q (or each Qi),
and proceed to solve LinRF(Q). In [6], we undertook a closer study of the
complexity of LinRF(Z). The main results follow.

THEOREM 3.2. LinRF(Z) ∈ coNP (referring to MLC loops); this problem
is strongly coNP-hard, even for deterministic SLC loops.

An outline of the proofs. coNP-hardness follows from the hardness of the
problem: given a polyhedron (in constraint representation), does it contain any
integer point? The reduction constructs a loop that has a LRF if and only if
the given polyhedron has no integer points.

For inclusion in coNP, we have to show that non-existence of a LRF is a
property for which there is a polynomially-verifiable witness. For simplicity,
consider a SLC loop Q. We start by observing that a single transition x′′ ∈ Q
that does not satisfy (3,4) for a given vector (λ0,~λ) suffices to show that (λ0,~λ)
are not the coefficients of a ranking function. We thus define W (x′′) to be the

set of coefficient vectors (λ0,~λ) ∈ Qn+1 that do not satisfy (3,4); we say that
they are witnessed against by x′′. It immediately follows that there is no LRF
for Q if and only if

⋃
x′′∈QW (x′′) = Qn+1. But this is not an effective condition,

since there may be infinitely integer points in Q.

The goal now is to obtain a finite (and polynomial) witness set. To this
end, we rely on convexity arguments, and on the generator representation of
a polyhedron Q. The generator representation consists of vertices, which are
points of the polyhedron, and rays, also known as recession directions; a ray
y′′ ∈ Q2n is a vector such that for x′′ ∈ Q, x′′ + ay′′ is in Q for all a ≥ 0. The
set of rays is denoted by RQ. We call such a vector y′′ a homogenous witness
(h-witness for short) against (λ0,~λ) if one of the following requirements is not
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satisfied:

~λ · y ≥ 0 (6)

~λ · (y − y′) ≥ 0 (7)

It can be shown that in this case, (λ0,~λ) cannot be the coefficient vector of a
ranking function. Now, our witness against the existence of a LRF is a pair X,Y
of sets, such that X ⊆ Q, Y ∈ RQ, X 6= ∅ and X,Y witness, all together, against
every possible coefficient vector. To verify this we only need to verify that the
witnesses are kosher (i.e., inclusion in Q and RQ, respectively), and that there is
no solution to the combined set of requirements (i.e., (3,4) for the members of X
and (6,7) for members of Y ). This is a polynomial-time procedure, if the size of
X and Y (in bits) is polynomial. Fortunately, the existence of a polynomial-size
witness set can be guaranteed; basically, we show that a polynomially big subset
of the generators constitutes such a witness set.

Synthesis. By computing the generator representation of a polyhedron (if not
available), we obtain an algorithm to find ranking functions—namely by finding
a coefficient vector that none of the generators witnesses againt. Computation
of the generators is, in general, of exponential time and space complexity. The
resulting ranking-function coefficients are, however, of polynomial bit-size, a re-
sult based on the considerations involved in proving the inclusion of the decision
problem in coNP. Interestingly, this sheds a new light on an algorithm proposed
in [9], which searches for LRF coefficients by a kind of bisection search on the
space of coefficients. Bounding the bit-size of the coefficients turns this search
(which is unbounded, and hence only a semi-decision procedure) into a decision
procedure.

Polynomially solvable cases. If coNP-hardness is considered as bad news,
a positive news is that some special cases of interest can be solved in polynomial
time. Basically, this happens when the transition polyhedra are either integral
to begin with, or of such a kind that their integer hull is easy to compute.
In [6] we characterize some benign cases, including loops in which the body
is a sequence of linear affine updates with integer coefficients (as in loop (5)
above) and the condition is defined by either an extended form of difference
constraints, a restricted form of Two Variables Per Inequality constraints, or a
cone (constraints where the free constant is zero). Some cases in which the body
involves linear constraints are also presented. A somewhat surprising hardness
result is that for octagonal guards [19, 7] and deterministic udpates, LinRF(Z)
is already coNP-hard.
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4 Lexicographic-Linear Ranking Functions

A lexicographic-affine ranking function (LLRF ) has the form

τ(x) = 〈ρ1(x), . . . , ρd(x)〉 where each ρi(x) = λ(i) ·x + λ
(i)
0 . It has to descend in

lexicographic order. The constant d is called the dimension of the function.
Lexicographic ranking functions are a very natural concept: the oldest ex-

ample of a (manual) termination proof using ranking functions [25] uses lexico-
graphic descent. Several automatic methods of finding LLRF s have appeared,
and we could point out that any method that finds a LRF for each loop in a
nested set of loops implicitly constructs a LLRF . An algorithm in the style of
Terminator [14] can also arrive at a lexicographic ranking function, but implicitly
and in a roundabout way.

Before discussing algorithms and complexity, there are some things to note,
and first the very definition, as there are different variants of the concept. Our
definition follows. We use the notation ∆ρ(x′′) for ρ(x)− ρ(x′).

Definition 4.1. Let τ = 〈ρ1, . . . , ρd〉. We say that τ is a LLRF for a set
T ⊆ Q2n of transitions if and only if for every x′′ ∈ T there exists i ≤ d for
which the following hold:

∀j < i . ∆ρj(x
′′) ≥ 0 (8)

∀j ≤ i . ρj(x) ≥ 0 (9)

∆ρi(x
′′) ≥ 1 (10)

When this holds, we write τ(x) �lex τ(x′′).

As for LRFs, the co-domain of the function is not really a well-founded set,
but it can be easily converted to a function into ωd in order to prove termination.
We note that the definition of [3] is more restrictive since it requires (9) to hold for
all 1 ≤ j ≤ d. In contrast the definition in [8] is more general since it requires (9)
to hold only for j = i. Examples can be given to show that these three classes
of function are really different. In terms of complexity, [3] give a polynomial-
time algorithm, based on repeated finding of LRFs using linear programming,
whereas [8] use a (possibly exponential) combinatorial search. Our work in [5]
is inspired by [3], but extends it in certain ways: most importantly, we consider
the complexity of the problem when the variables are integer (that is, the set T
of transitions is specified as the integer points in a set Q1, . . . ,Qk of transition
polyhedra).

In fact, [3] includes a (quite clever) completeness proof, but as for previous
LRF generation procedures, this completeness is for rational-valued state space.
Even over the rationals, their solution is incomplete when referring to our more
flexible class of functions. An interesting property of our class is that an SLC
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loop may require a lexicographic ranking function, as the following example
demonstrates:

while(x1 ≥ 0, x2 ≥ 0, x3 ≥ −x1) do x′2 = x2 − x1, x′3 = x3 + x1 − 2 . (11)

It has a LLRF τ1 = 〈x2, x3〉 as in Definition 4.1 (over both rationals and inte-
gers), while according to the more restricted definition in [3], it has no LLRF at
all.

As for linear ranking functions, we consider both the complexity of the de-
cision problem over the integers (denoted LexLinRF(Z)), and the synthesis
problem. Our main results are:

THEOREM 4.2. LexLinRF(Z) is coNP-complete.

THEOREM 4.3. For synthesis of LLRF s, when variables range over the inte-
gers, there is a complete synthesis algorithm that runs in polynomial time, given
integer polyhedra (otherwise, integer hulls have to be computed, which increases
the running time to exponential.)

An essential component in our proofs is the notion of a quasi-LRF. We say
that ρ is a quasi-LRF for a set T of transitions if for every x′′ ∈ T the following
holds:

ρ(x) ≥ 0 (12)

∆ρ(x′′) ≥ 0 (13)

We say that it is a non-trivial if, in addition, ∆ρ(x′′) > 0, for at least one
x′′ ∈ X.

Our synthesis algorithm constructs a LLRF 〈ρ1(x), . . . , ρd(x)〉 in this way:
first a non-trivial quasi-LRF ρ1 is found; then the transitions where ρ1 strictly
descends are eliminated; if some are left, the algorithm is repeated to generate
the next components. The search for a quasi-LRF uses linear programming,
resembling the LRF procedures based on the Farkas lemma. The passage to the
next iteration is based on the fact that the set of transitions where ρ1 does not
descend, out of a transition polyhedron Qi, is either empty or a face of Qi. This
leads to an efficient algorithm to compute the polyhedra for the next iteration,
keeping them integral, and not blowing up the size of the coefficients.

For the decision problem, our results rest on the following proposition, which
in turn is proved (in part) using the algorithm:

PROPOSITION 4.4. There is no LLRF for a set of transitions T ⊆ Z2n if
and only if there is W ⊆ T for which there is no non-trivial quasi-LRF .
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Now, inclusion in coNP follows by showing that non-existence of a non-trivial
quasi-LRF has a polynomially checkable witness. The considerations in proving
this claim are similar to those outlines for LRF s, involving witnesses which are
vertices and h-witnesses which are rays, though slightly more complicated since
the witness has to rule out only non-trivial quasi-LRF s (a trivial quasi-LRF ,
namely ρ(x) = 0, always exists, and there may be others).

Further observations. Two interesting results that followed from our inves-
tigation are these:

• The dimension d of our ranking functions is always at most n, for an MLC
loop of any number of alternatives.

• If an SLC loop has such a ranking function, its number of iterations can be
linearly bounded (more precisely, it is linear in the absolute values of the
variables in the initial state) even if the dimension of the ranking function
is larger than 1.

5 General Control-Flow Graphs

MLC loops can be extended to general CFGs annotated with linear constraints.
This is the program abstraction used in [3, 18, 12, 23]. In [3], termination certifi-
cates for such programs consists of a lexicographic affine function ρ` associated
with every program location `, such that in a transition s ` s′ from location ` to
`′, we have ρ`(s) �lex ρ`′(s

′). As their algorithm shows (and also some previous
works), the generalization from finding a LLRF for an MLC loop to this model
is quite smooth, and our results transfer in the same way.

A predecessor to [3], in a sense, is the algorithm in [12] (extending [11]). It is
somewhat similar in structure to that of [3] (and also ours), finding linear quasi-
ranking functions one by one, but it does not construct LLRF s explicitly, and
its space of ranking functions is more restricted because it handles a strongly-
connected component S of the program by looking for a ρ which is bounded and
non-increasing throughout the component (that is, ρ` is the same for all ` ∈ S).
However, we may note that the last difference disappears if one considers only
MLC loops.
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Synthesis holds the promise to revolutionize the development of complex
systems by automating the translation from specifications to implementations.
Synthesis algorithms are based on the same level of mathematical rigor as veri-
fication algorithms but can be applied at earlier development stages, when only
parts of the design are available. Given a formal specification of the desired
system properties, for example in a temporal logic, we determine if the partial
design can be completed into a full design that satisfies the properties.

For general distributed systems, the synthesis problem is undecidable. How-
ever, there has been a sequence of discoveries where the decidability was es-
tablished for specific system architectures, such as pipelines and rings, or other
restrictions on the problem, such as local specifications. Encouraged by these
findings, new specification languages like Coordination Logic aim for a uniform
treatment of the synthesis problem.

In this talk, I will review several techniques that transform undecidable syn-
thesis problems into decidable problems. Compositional synthesis uses a proof
rule to reduce an undecidable synthesis problem into several decidable synthesis
problems. Bounded synthesis transforms the synthesis problem into a decidable
search problem by introducing a bound on the size of the implementation. Lazy
synthesis transforms the synthesis problem into a sequence of constraint solving
problems, each decidable but increasingly complex, until an implementation is
found.
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Abstract

The verification of program transformation systems requires that we
prove their termination. For positive supercompilation, ensuring termina-
tion requires the memoisation of expressions which are subsequently used
to determine when to perform generalization and folding. For a first-order
language, it is sufficient to memoise only those expressions immediately
prior to a function unfolding step. However, for a higher-order language,
this is not sufficient to ensure termination, so more expressions need to
be memoised. Determining which additional expressions to memoise can
greatly affect the results obtained. Memoising too many expressions re-
quires a lot more expensive checking for the possibility of generalization or
folding; more new functions will also be created and generalization will be
performed more often, resulting in less improved residual programs. We
would therefore like to memoise as few expressions as possible while still
ensuring termination. In this paper, we describe a simple pre-processing
step which can be applied to higher-order programs prior to transforma-
tion by positive supercompilation to ensure that in any potentially infinite
sequence of transformation steps there must be function unfolding. We
prove, for programs that have been pre-processed in this way, that it is
only necessary to memoise expressions immediately before function un-
folding to ensure termination, and we demonstrate this on a number of
tricky examples.

1 Introduction

Supercompilation is a program transformation technique for functional languages
which can be used for program specialization and for the removal of interme-
diate data structures. Supercompilation was originally devised by Turchin in
what was then the USSR in the early 1970s, but did not become widely known
to the outside world until over a decade later. One reason for this delay was that
the work was originally published in Russian in journals which were not acces-
sible to the outside world; it was eventually published in mainstream journals
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much later [23, 24]. Another possible reason why supercompilation did not be-
come more widely known much earlier is that it was originally formulated in the
language Refal, which is rather unconventional in its use of a complex pattern
matching algorithm. This meant that Refal programs were hard to understand,
and describing transformations making use of this complex pattern matching
algorithm made the descriptions quite inaccessible. This problem was overcome
by the development of positive supercompilation [19, 22], which is defined over a
more familiar functional language.

Ensuring the termination of positive supercompilation requires the memoi-
sation of expressions, and then using these memoised expressions to determine
when to perform generalization and folding. Positive supercompilation was orig-
inally formulated for a first-order language, so it was sufficient to memoise only
the expressions immediately prior to function unfolding to ensure termination
since in any potentially infinite sequence of transformation steps there must be
an unfolding. However, this is not sufficient to ensure termination when trans-
forming a higher-order language. For example, consider the following program:

Example 1. (λx→ x x) (λx→ x x)

When this program is transformed there will be a potentially infinite se-
quence of transformation steps without any unfolding. Although this expression
would not be accepted by most type checkers, there are also many examples of
expressions which would be accepted by a type checker and which will have a
potentially infinite sequence of transformation steps without any unfolding. For
example, consider the following program:

Example 2. data D = F (D → D)

(λf → f (F (λx→ f x x)) (F (λx→ f x x)))
(λy → case y of F g → g)

This program will also produce a potentially infinite sequence of transforma-
tion steps without any unfolding when transformed.

To avoid this potential non-termination, some formulations of positive su-
percompilation for a higher-order language memoise all expressions [17, 2], or
at least a substantial subset of them [9, 10, 11]. Memoising too many expres-
sions requires a lot more expensive checking for the possibility of generalization
or folding. Also, more new functions will be created and generalization will be
performed more often, resulting in less improved residual programs.

In this paper, we describe a simple pre-processing step which can be applied
to higher-order programs prior to transformation by positive supercompilation
to ensure that in any potentially infinite sequence of transformation steps there
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must be an unfolding. This involves introducing names for some anonymous
functions (and possibly also performing λ-lifting [7]) to ensure that only mem-
oising expressions immediately preceding an unfold step is sufficient to ensure
termination of the transformation. This pre-processing step would transform
the program in Example 1 to the following:

f f where f = λx→ x x

Thus, any potentially infinite sequence of transformation steps would have to
include the unfolding of f . Applying the pre-processing transformation to the
program in Example 2 would give the following:

f1 f2
where
f1 = λf → f (F (f3 f)) (F (f3 f))
f2 = λy → case y of F g → g
f3 = λf → λx→ f x x

Thus, any potentially infinite sequence of transformation steps would have to in-
clude the unfolding of f2 and f3. The new functions are introduced sparingly, so
we argue that there will not be a large overhead required for the additional mem-
oisation and comparison of expressions prior to the unfolding of these functions,
and that better residual programs will be produced as a result.

The remainder of this paper is structured as follows. In Section 2, we describe
the higher-order language over which the transformations are defined. In Section
3, we give our own formulation of the positive supercompilation algorithm on
this language. In Section 4, we consider the different situations in which this
transformation may not terminate and give examples. In Section 5, we present
our pre-processing step to transform higher-order programs into a form for which
positive supercompilation will be guaranteed to terminate and prove that this is
the case. Section 6 concludes and considers related work.

2 Language

In this section, we describe the higher-order functional language which will be
used throughout this paper. The syntax of this language is given in Fig. 1.

The intended operational semantics of the language is normal order reduc-
tion. Programs in the language consist of an expression to evaluate and a set of
function definitions. An expression can be a variable, constructor application,
λ-abstraction, function call, application, case or let. Variables introduced by
λ-abstraction, let or case patterns are bound; all other variables are free. We use
fv(e) and bv(e) to denote the free and bound variables respectively of expression
e. We write e1 ≡ e2 if e1 and e2 differ only in the names of bound variables.
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prog ::= e0 where f1 = e1 . . . fn = en Program

e ::= x Variable
| c e1 . . . en Constructor
| λx → e λ-Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1 → e1 | · · · | pn → en Case Expression
| let x = e0 in e1 Let Expression

p ::= c x1 . . . xn Pattern

Figure 1: Language Syntax

It is assumed that the input program contains no let expressions; these are
only introduced during transformation. Each constructor has a fixed arity; for
example Nil has arity 0 and Cons has arity 2. In an expression c e1 . . . en , n
must equal the arity of c. The patterns in case expressions may not be nested.
No variable may appear more than once within a pattern. We assume that the
patterns in a case expression are non-overlapping and exhaustive. It is assumed
that the language is typed using the Hindley-Milner polymorphic typing system
[16, 3] so erroneous terms such as (c e1 . . . en) e where c is of arity n and
case (λx → e) of p1 → e1 | · · · | pn → en cannot occur.

Definition 2.1 (Substitution). θ = {x1 7→ e1, . . . , xn 7→ en} denotes a substi-
tution. If e is an expression, then eθ = e{x1 7→ e1, . . . , xn 7→ en} is the result
of simultaneously substituting the expressions e1, . . . , en for the corresponding
variables x1, . . . , xn, respectively, in the expression e while ensuring that bound
variables are renamed appropriately to avoid name capture.

Definition 2.2 (Renaming). σ = {x1 7→ x′1, . . . , xn 7→ x′n}, where σ is a
bijective mapping, denotes a renaming. If e is an expression, then eσ =
e{x1 7→ x′1, . . . , xn 7→ x′n} is the result of simultaneously replacing the vari-
ables x1, . . . , xn with the corresponding variables x′1, . . . , x

′
n, respectively, in the

expression e while ensuring that bound variables are renamed appropriately to
avoid name capture.

Definition 2.3 (Shallow Reduction Context). A shallow reduction context R
is an expression containing a single hole • in the place of the redex, which can
have one of the two following possible forms:

R ::= • e | (case • of p1 → e1 | . . . | pn → en)
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Definition 2.4 (Evaluation Context). An evaluation context E is represented
as a sequence of shallow reduction contexts (known as a zipper [6]), representing
the nesting of these contexts from innermost to outermost within which the
expression redex is contained. An evaluation context can therefore have one of
the two following possible forms:

E ::= 〈〉 | 〈R : E〉

Definition 2.5 (Insertion into Redex). The insertion of an expression e into
the redex of an evaluation context κ, denoted by κ•e, is defined as follows:

〈〉•e = e
〈(• e′) : κ〉•e = κ•(e e′)
〈(case • of p1 → e1 | . . . | pn → en) : κ〉•e

= κ•(case e of p1 → e1 | . . . | pn → en)

Free variables within the expression e may become bound within κ•e; if κ•e is
closed then we call κ a closing context for e.

3 Positive Supercompilation

In this section, we give our own higher-order formulation of the positive super-
compilation algorithm [22]. At the heart of the positive supercompilation algo-
rithm are a number of driving rules which reduce a term (possibly containing
free variables) using normal-order reduction. Function unfolding is performed
as a part of this reduction process, and folding is performed upon encountering
a renaming of a memoised expression. To ensure the termination of the trans-
formation, generalization is performed when an expression is encountered which
is a homeomorphic embedding of a memoised expression, denoted by ..

The homeomorphic embedding relation was derived from results by Higman
[5] and Kruskal [12] and was defined within term rewriting systems [4] for de-
tecting the possible divergence of the term rewriting process. Variants of this
relation have been used to ensure termination within positive supercompilation
[21, 20], partial evaluation [14] and partial deduction [1, 13].

Definition 3.1 (Well-Quasi Order). A well-quasi order on a set S is a reflexive,
transitive relation . such that for any infinite sequence s1, s2, . . . of elements
from S there are numbers i, j with i < j and si . sj .

This ensures that in any infinite sequence of expressions e0, e1, . . . there def-
initely exists some i < j where ei . ej , so an embedding must eventually be
encountered and transformation will not continue indefinitely.
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Definition 3.2 (Embedding of Expressions). To define our homeomorphic em-
bedding relation on expressions ., we first define a relation E as shown in Figure
2, where e1 E e2 if e1 is embedded in e2 and all of the free variables within e1
and e2 also match up.

e1 Ec e2
e1 E e2

e1 Ed e2
e1 E e2

x Ec x f Ec f

∀i ∈ {1 . . . n}.ei E e′i
(c e1 . . . en) Ec (c e′1 . . . e

′
n)

∃i ∈ {1 . . . n}.e E ei

e Ed (c e1 . . . en)

e E (e′{x′ 7→ x})
λx.e Ec λx

′.e′
e E e′

e Ed λx.e
′

e0 E e′0 e1 E e′1
(e0 e1) Ec (e′0 e

′
1)

∃i ∈ {0, 1}.e E ei

e Ed (e0 e1)

e0 E e′0 ∀i ∈ {1 . . . n}.∃σ.pi ≡ (p′i σ) ∧ ei E (e′i σ)

(case e0 of p1 → e1| . . . |pn → en) Ec (case e′0 of p′1 → e′1| . . . |p′n → e′n)

∃i ∈ {0 . . . n}.e E ei

e Ed (case e0 of p1 → e1| . . . |pn → en)

Figure 2: Homeomorphic Embedding Relation

An expression is embedded within another by this relation if either diving
(denoted by Ed) or coupling (denoted by Ec) can be performed. Diving oc-
curs when an expression is embedded in a sub-expression of another expression,
and coupling occurs when two expressions have the same top-level construct
and all the corresponding sub-expressions of the two constructs are embedded.
Our version of this embedding relation extends previous versions to handle λ-
abstractions and case expressions that contain bound variables. In these in-
stances, the bound variables within the two expressions must also match up.
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The homeomorphic embedding relation . can now be defined as follows:

e1 . e2 iff ∃σ.e1σ Ec e2

Within this relation the two expressions must be coupled but, since σ is a re-
naming, there is no longer a requirement that all of the free variables within the
two expressions match up. Generalizing only when two expressions are coupled
ensures that the result is not a variable, and there is no need for a split operation
as used in [21].

Example 3. Some examples of homeomorphic embedding are as follows:

1. f (g x) . f (g y) 6. f (g x) ./ g (f y)
2. f (h x) . f (g (h y)) 7. g (h x) ./ f (g (h y))
3. f x y . f z z 8. f z z ./ f x y
4. f x x . f (g y) (h y) 9. f (g y) (h y) ./ f x x
5. λx.x . λy.y 10. λx.x ./ λy.x

Theorem 3.3. The homeomorphic embedding relation . is a well-quasi-order.

Proof. The proof is identical to that in [10]. It involves showing that there are
a finite number of functors (function names and constructors) in the language.
Applications of different arities are replaced with separate constructors; we prove
that arities are bounded so there are a finite number of these. We also replace
case expressions with constructors. Since our homeomorphic embedding relation
requires that the bound variables in expressions match up, bound variables are
defined using de Bruijn indices, and each of these are replaced with separate
constructors; we also prove that de Bruijn indices are bounded. The overall
number of functors is therefore finite, so Kruskal’s tree theorem can then be
applied to show that . is a well-quasi-order.

Definition 3.4 (Generalization). The generalization of two expressions e1 and
e2 is a triple (eg, θ1, θ2) where θ1 and θ2 are substitutions such that egθ1 ≡ e1
and egθ2 ≡ e2.

The generalization we define for expressions e1 and e2 is the most specific gener-
alization, denoted by e1ue2, as defined in term algebra [4]. When an expression
is generalized, sub-expressions within it are replaced with variables, which im-
plies a loss of knowledge about the expression. The most specific generalization
therefore entails the least possible loss of knowledge.

Definition 3.5 (Most Specific Generalization). A most specific generalization
of expressions e1 and e2 is a generalization (eg, θ1, θ2) such that for every other
generalization (e′g, θ

′
1, θ

′
2) of e1 and e2, eg is an instance of e′g.
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Definition 3.6 (The Generalization Operator u). The most specific general-
ization of two expressions e1 and e2, denoted by e1 u e2, is defined as shown in
Figure 3.

x u x = x

f u f = f

(c e1 . . . en) u (c e′1 . . . e
′
n) = (c eg1 . . . e

g
n,
⋃n

i=1 θi,
⋃n

i=1 θ
′
i)

where
∀i ∈ {1 . . . n}.(egi , θi, θ′i) = ei u e′i

(λx.e0) u (λx′.e′0) = (λx.eg0, θ0, θ
′
0)

where
(eg0, θ0, θ

′
0) = e0 u (e′0{x′ 7→ x})

(e0 e1) u (e′0 e
′
1) = (eg0 e

g
1, θ0 ∪ θ1, θ′0 ∪ θ′1)

where
(eg0, θ0, θ

′
0) = e0 u e′0

(eg1, θ1, θ
′
1) = e1 u e′1

(case e0 of p1 → e1| . . . |pn → en) u (case e′0 of p′1 → e′1| . . . |p′n → e′n) =
(case eg0 of p1 → eg1| . . . |pn → egn,

⋃n
i=0 θi,

⋃n
i=0 θ

′
i)

where
(eg0, θ0, θ

′
0) = e0 u e′0

∀i ∈ {1 . . . n}.∃σ.pi ≡ (p′i σ) ∧ (egi , θi, θ
′
i) = ei u (e′i σ)

e u e′ = (x, {x 7→ e}, {x 7→ e′}) in all other cases (x is fresh)

Figure 3: Generalization Rules

Within these rules, if both expressions have the same top-level construct, this
is made the top-level construct of the resulting generalized expression, and the
corresponding sub-expressions within the construct are then generalized. Oth-
erwise, both expressions are replaced by the same fresh variable. It is assumed
that the new variables introduced are all different and distinct from the origi-
nal program variables. The following rewrite rule is exhaustively applied to the
triple resulting from generalization to minimize the substitutions by identifying
common substitutions that were previously given different names:

(e, θ ∪ {x 7→ e′, x′ 7→ e′}, θ′ ∪ {x 7→ e′′, x′ 7→ e′′}) ⇒
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(e{x 7→ x′}, θ ∪ {x′ 7→ e′}, θ ∪ {x′ 7→ e′′})
The results of applying this most specific generalization to items 1-5 in Example
3 are as follows:

1. (f g v, {v 7→ x}, {v 7→ y})

2. (f v, {v 7→ h x}, {v 7→ g (h y)})

3. (f v1 v2, {v1 7→ x, v2 7→ y}, {v1 7→ z, v2 7→ z})

4. (f v1 v2, {v1 7→ x, v2 7→ x}, {v1 7→ g y, v2 7→ h y})

5. (λx.x, {}, {})
During transformation, let expressions are introduced to represent the results
of generalization; note that there were no let expressions in the original pro-
gram and these are only introduced as a result of generalization. We define an
abstraction operation on expressions that extracts the sub-terms resulting from
generalization.

Definition 3.7 (Abstraction Operation).

abstract(e, e′) = let x1 = e1, . . . , xn = en in e0
where e u e′ = (e0, {x1 7→ e1, . . . , xn 7→ en}, θ)

Positive supercompilation effectively performs a normal-order reduction of the
input program. Previously encountered terms are memoised and if the current
term is a renaming of a memoised one, then folding is performed, and the trans-
formation is complete. If the current term has a memoised term embedded, then
generalization is performed, and the sub-terms of the generalization are further
transformed. Generalization ensures that a renaming of a memoised term is al-
ways eventually encountered, and that the transformation therefore terminates.
The rules for our formulation of positive supercompilation are as shown in Figure
4.

The rules T are defined on an expression and its surrounding context, de-
noted by κ. Only those expressions that have a function in the redex position
(immediately prior to unfolding) are memoised in rule (6). These expressions
are replaced by a new function call, and this new function call is associated
with the expression it replaced in the set ρ. On encountering a renaming of a
memoised expression contained in ρ, it is also replaced by a corresponding call
of its associated new function. The parameter ∆ contains the set of function
definitions in the original program.

The rules T ′ are defined on an expression and its surrounding context, also
denoted by κ. These rules are applied when the normal-order reduction of the
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(1) T [[x ]] κ ρ ∆ = T ′[[x ]] κ ρ ∆
(2) T [[c e1 . . . en ]] 〈〉 ρ ∆ = c (T [[e1 ]] 〈〉 ρ ∆) . . . (T [[en ]] 〈〉 ρ ∆)
(3) T [[c e1 . . . en ]] 〈(case • of p1 → e ′

1 | · · · | pk → e ′
k ) : κ〉 ρ ∆ =

T [[e ′
i{x1 7→ e1 , . . . , xn 7→ en}]] κ ρ ∆ (pi = c x1 . . . xn)

(4) T [[λx → e]] 〈〉 ρ ∆ = λx→ (T [[e]] 〈〉 ρ ∆)
(5) T [[λx → e]] 〈(• e ′) : κ〉 ρ ∆ = T [[e{x 7→ e ′}]] κ ρ ∆

(6) T [[f ]] κ ρ ∆ =





eσ if ∃(e = e′) ∈ ρ, σ.e′σ ≡ κ•f
T [[abstract(κ•f , e′)]] 〈〉 ρ ∆ if ∃(e = e′) ∈ ρ.e′ . κ•f
f ′ x1 . . . xn
where
f ′ = λx1 . . . xn →

(T [[∆(f )]] κ (ρ ∪ {f ′ x1 . . . xn = κ•f }) ∆)

otherwise
(f ′ is fresh, {x1 . . . xn} = fv(κ•f ))

(7) T [[e e ′]] κ ρ ∆ = T [[e]] 〈(• e ′) : κ〉 ρ ∆
(8) T [[case e0 of p1 → e1 | · · · | pn → en ]] κ ρ ∆ =

T [[e0]] 〈(case • of p1 → e1 | · · · | pn → en) : κ〉 ρ ∆
(9) T [[let x = e0 in e1 ]] κ ρ ∆ = let x = (T [[e0 ]] 〈〉 ρ ∆) in (T [[e1 ]] κ ρ ∆)

(10) T ′[[e]] 〈〉 ρ ∆ = e
(11) T ′[[e]] 〈(• e′) : κ〉 ρ ∆ = T ′[[e (T [[e′]] 〈〉 ρ ∆)]] κ ρ ∆
(12) T ′[[x ]] 〈(case • of p1 → e1 | · · · | pn → en) : κ〉 ρ ∆ =

case x of
p1 → (T [[(κ•e1){x 7→ p1}]] 〈〉 ρ ∆) | · · · | pn → (T [[(κ•en){x 7→ pn}]] 〈〉 ρ ∆)

(13) T ′[[e]] 〈(case • of p1 → e1 | · · · | pn → en) : κ〉 ρ ∆ =
case e of p1 → (T [[e1]] κ ρ ∆) | · · · | pn → (T [[en]] κ ρ ∆)

Figure 4: Positive Supercompilation Transformation Rules

input program becomes ‘stuck’ as a result of encountering a variable in the
redex position. The expression will already have been transformed and so is not
transformed any further, but the surrounding context is further transformed. In
rule (12), if the context surrounding a variable redex is a case, then information
is propagated to each branch of the case to indicate that this variable has the
value of the corresponding branch pattern.

We can see that there are no trivial loops in the rules T and T ′. In the rules
T , a reduction step is performed in rules (3), (5) and (6), and sub-expressions
of the redex are transformed in rules (2), (4), (7), (8) and (9). In rule (1), the
rules T ′ are invoked, and in each of these rules, sub-expressions of the context
are further transformed using the rules T . Non-termination can therefore only
occur if the terms encountered in the transformation rules grow uncontrollably.
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4 Termination

In [19], three different possible causes of non-termination of positive supercom-
pilation when applied to a first-order functional language were identified: ob-
structing function calls, accumulating parameters and accumulating narrowing1.
A further possible cause of non-termination has also been identified in [18] for
the deforestation of higher-order functional languages, which also applies to pos-
itive supercompilation: accumulating spines. We now give examples of each of
these causes of non-termination.

nrev xs
where
nrev = λxs → case xs of

Nil → Nil
| Cons x ′ xs ′ → app (nrev xs ′) (Cons x ′ Nil)

app = λxs → λys → case xs of
Nil → ys
| Cons x ′ xs ′ → Cons x ′ (app xs ′ ys)

Figure 5: Example Obstructing Function Call

Example 4 (Obstructing Function Call). Consider the program shown in Figure
5.

During the transformation of this program, we encounter the progressively larger
terms: nrev xs, case (nrev xs) of · · · , case (case (nrev xs) of · · · ) of · · · ,
etc. The call to nrev thus prevents the surrounding context from being reduced,
so this context continues to grow. This call to nrev is therefore an obstructing
function call.

Example 5 (Accumulating Parameter). Consider the program shown in Figure
6.

During transformation of this program, we encounter the progressively larger
terms: arev′ xs Nil, arev′ xs′ (Cons x′ Nil), arev′ xs′′ (Cons x′′ (Cons x′ Nil)),
etc. The second parameter in each recursive call to arev′ therefore accumulates
a progressively larger term.
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arev xs
where
arev = λxs → arev ′ xs Nil
arev ′ = λxs → λys → case xs of

Nil → ys
| Cons x ′ xs ′ → arev ′ xs ′ (Cons x ′ ys)

Figure 6: Example Accumulating Parameter

app xs xs
where
app = λxs → λys → case xs of

Nil → ys
| Cons x xs → Cons x (app xs ys)

Figure 7: Example Accumulating Narrowing

Example 6 (Accumulating Narrowing). Consider the program shown in Figure
7.
During transformation of this program, we encounter the progressively larger
terms: app xs xs, app xs′ (Cons x′ xs′), app xs′′ (Cons x′ (Cons x′′ xs′′)),
etc. The second parameter in each recursive call to app therefore also accumu-
lates a progressively larger term, but in this case the accumulation is caused by
unification-based information propagation (narrowing).

Example 7 (Accumulating Spine). Consider the program shown in Figure 8.

f x
where
f = λx → f x x

Figure 8: Example Accumulating Spine

During transformation of this program, we encounter the progressively larger
terms: f x, f x x, f x x x, etc. Each recursive call to f therefore accumulates
an additional parameter. We should also note that this type of function definition
is prohibited in most typing schemes.

1This was originally called accumulating side-effects, but since functional languages do
not admit side-effects, we prefer to call this possible cause of non-termination accumulating
narrowing.
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In all of the above examples, a previously encountered term becomes em-
bedded within a subsequent one. Since the sequence of transformation steps in
each example must always include function unfolding, this embedding will be
detected by our positive supercompilation algorithm and generalization will be
performed, thus ensuring termination. However, not all recursion has to take
place through named functions; this will also occur if there is a λ-term which
is not strongly normalizing, as is the case for the programs given in examples 1
and 2. To ensure termination, we therefore need to make sure that all recursive
functions are named.

5 Ensuring Termination

In this section, we show how to ensure the termination of our formulation of
positive supercompilation. As shown in the previous section, non-termination
can occur even in the absence of named functions if we have a λ-term which is not
strongly normalizing. The sequence of terms obtained will require no function
unfolding, and therefore will not be checked for possible folding or generalization.
To avoid this possibility, we require that programs are in λ-prefix form, in which
the only λ-abstractions occur in the prefix of the program expression or the
prefix of function bodies. This λ-prefix form is defined as shown in Figure 9.

prog ::= pf0 where f1 = pf1 . . . fn = pfn Program

pf ::= λx → pf λ-Abstraction
| pf ′ λ-Free Expression

pf ′ ::= x Variable
| c pf ′

1 . . . pf ′
n Constructor

| f Function Call
| pf ′

0 pf ′
1 Application

| let x = pf ′
0 in pf ′

1 Let Expression
| case pf ′

0 of p1 → pf ′
1 | · · · | pn → pf ′

n Case Expression

p ::= c x1 . . . xn Pattern

Figure 9: λ-Prefix Form

It is quite straightforward to convert any program into this form; simply
replace any λ-abstractions which are not in the prefix of the program expression
or the prefix of a function body with a freshly named function. λ-lifting [7] is
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also performed to abstract over any of the free variables in the λ-abstraction,
as named functions in our language cannot contain free variables. If the λ-
abstraction matches one which has already been replaced by a function call, then
it is replaced with a call to the same function as previously, thus minimizing the
number of new function definitions which are introduced.

Example 8. Consider the program given in Example 2. This contains four λ-
abstractions which are not in its prefix. The abstraction over f is made the body
of the freshly named function f1 and the abstraction over y is made the body of
the freshly named function f2. The other two abstractions over x are identical,
so this abstraction is made the body of the freshly named function f3; however,
since the variable f appears free in this expression, λ-lifting is performed to
abstract over f , and this extra parameter is added to the two calls of f3.

We now prove that our simple pre-processing step is sufficient to ensure the
termination of our formulation of the positive supercompilation algorithm. We
do this by showing that if the original input to our positive supercompilation
algorithm is in λ-prefix form, then all of the terms subsequently encountered
must be in a particular form. We then show that any potentially infinite sequence
of transformation steps in which the expressions are in this form must include
function unfolding, so the transformation is guaranteed to terminate.

Lemma 5.1 (On The Form of Terms Encountered by Positive Supercompila-
tion). If the input to our positive supercompilation algorithm is in λ-prefix form,
then all of the terms subsequently encountered must have the following form in
which the only λ-abstractions are in the prefix of the redex:

sf ::= case sf of p1 → pf ′
1 | · · · | pn → pf ′

n

| sf pf ′

| pf

where pf and pf ′ are as defined in figure 9.

Proof. The interesting cases are where substitution is performed in rules (3)
and (5), and where generalisation is performed in rule (6). Since the only λ-
abstractions can be in the redex, the terms which are substituted in rules (3)
and (5) cannot contain any λ-abstractions, so the resulting term must also be
in the above form. Generalization is performed in rule (6) when the redex is a
function name, so the generalized term cannot contain any λ-abstractions and
neither can the extracted sub-expressions. Details of the proof are given in
Appendix A.

67



On the Termination of Higher-Order Positive Supercompilation G.W. Hamilton

Lemma 5.2. If the input to our positive supercompilation algorithm is in λ-
prefix form, then every infinite sequence of transformation steps must include
function unfolding.

Proof. Every infinite sequence of transformation steps must include either func-
tion unfolding or λ-application. If the input term is in λ-prefix form, then by
Lemma 5.1, the only λ-abstractions in the terms subsequently encountered will
be in the prefix of the redex, so transformation rule (4) or (5) will be contin-
ually applied until there are no λ-abstractions remaining in the current term.
Thus, the only way in which new λ-abstractions can be introduced is by func-
tion unfolding. Thus every infinite sequence of transformation steps must include
function unfolding.

We are now able to prove our desired result.

Theorem 5.3. If the input to our positive supercompilation algorithm is in
λ-prefix form, then it is guaranteed to terminate.

Proof. The proof is by contradiction. If our positive supercompilation algorithm
did not terminate then the set of memoised expressions ρ must be infinite, since
by Lemma 5.2 every infinite sequence of transformation steps must include func-
tion unfolding. Every new expression which is added to ρ cannot have any of the
previous expressions in ρ embedded within it by the homeomorphic embedding
relation ., since folding or generalization would have been performed instead.
However, this contradicts the fact that . is a well-quasi-order (Theorem 3.3).

6 Conclusion and Related Work

In this paper, we have described a simple pre-processing step which can be ap-
plied to higher-order programs prior to transformation by positive supercompi-
lation to ensure that in any potentially infinite sequence of transformation steps
there must be an unfolding. This involves introducing names for some anony-
mous functions to ensure that only memoising expressions immediately preced-
ing an unfold step is sufficient to ensure termination of the transformation. The
original positive supercompilation algorithm [19, 22] was only formulated for a
first-order language, so it was sufficient to only memoise the expressions imme-
diately prior to an unfolding step. In the higher-order formulations of positive
supercompilation given by Mitchell [17] and Bolingbroke [2], all expressions are
memoised. We argue that the extra work required for the additional checking for
generalization and folding is too computationally expensive, particularly since
the homeomorphic embedding check is very time consuming; this has been borne
out by the experimental results obtained using this approach. It should also be
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pointed out that the implementation of positive supercompilation in [17] will
not terminate on programs such as that given in Example 2. This is because the
simplification rules that are applied to terms prior to transformation by positive
supercompilation will not terminate for such programs which use contravariant
(negative) data types. It is argued in [17] that this problem only occurs for
contrived programs, and it is also a problem for GHC, which will not termi-
nate when compiling this example program. However, this seems unsatisfactory.
It is noted in [17] that this non-termination problem could be avoided by not
performing simplification on negative data types. A similar approach was also
adopted by Jonsson [8] and Mendel-Gleason [15] by requiring that all types in
the input program are positive. This also seems unsatisfactory since such typing
schemes are not used in mainstream functional languages.

Rather than memoising all expressions, the approach taken in the higher-
order supercompiler HOSC [9, 10, 11] is to restrict this to only those expressions
which are considered to be non-trivial. In HOSC 1.0 [9], an expression is con-
sidered to be non-trivial if it either has a function in the redex or an irreducible
expression in the selector of a case expression (corresponding to the left hand
side of our rules (6), (12) and (13)). However, it was subsequently discovered
[10] that this was not sufficient to ensure the termination of the supercompiler,
because it will not terminate for programs which encode recursion using a data
type such as that given in Example 2. In HOSC 1.1 [10], an expression for
which the next transformation step involves a substitution (corresponding to
the left hand side of our rules (3) and (5)) is considered to be non-trivial if
it satisfies a size constraint in which the expression resulting from the substi-
tution is no smaller than the expression before substitution. However, it was
subsequently discovered [11] that memoising every expression for which the next
transformation step involves a β-reduction produces poor residual programs. In
HOSC 1.5 [11], expressions for which the next transformation step involves a
β-reduction are not memoised, but all applications and case expressions are
(corresponding to the left hand side of our rules (7) and (8)), thus ensuring that
in any potentially infinite sequence of transformation steps expressions will still
be memoised. However, we argue that this approach still requires a lot of addi-
tional work when checking for generalization and folding, and can still produce
poor residual programs. Using our approach, after the pre-processing step, only
those expressions encountered immediately prior to an unfolding step (rule (6))
need to be memoised and checked for generalization and folding.

Using our approach, we are not able to prove that the programs resulting
from transformation are an improvement over the original programs, since not
all new functions are introduced in conjunction with the unfolding of an old
function. However, this is a problem for all of the described algorithms for
higher-order positive supercompilation. However, using our approach, less new
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functions will be created and generalization will be performed less often, result-
ing in more improved residual programs. We have implemented the techniques
described in this paper and preliminary experiments show that they make the
resulting supercompiler more efficient and that they produce more improved
residual programs in some cases.
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A Proof of Lemma 5.1

We need to prove that for each of the transformation rules given in Figure 4,
if T [[e]] κ ρ ∆ = . . . T [[e1 ]] κ1 ρ1 ∆ . . . T [[en ]] κn ρn ∆ . . . and κ•e ∈ sf , then
∀i ∈ {1 . . . n}.κi•ei ∈ sf .
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Case (1): T [[x ]] κ ρ ∆ = T ′[[x ]] κ ρ ∆

All further applications of T arising from this application of T ′ are applied to
sub-expressions from the context κ. Since κ•x ∈ sf , then for all sub-expressions
ei in κ, ei ∈ pf ′, so ei ∈ sf

Case (2): T [[c e1 . . . en ]] 〈〉 ρ ∆ = c (T [[e1 ]] 〈〉 ρ ∆) . . . (T [[en ]] 〈〉 ρ ∆)

Since c e1 . . . en ∈ sf , then ∀i ∈ {1 . . . n}.ei ∈ pf ′, so ∀i ∈ {1 . . . n}.ei ∈ sf
Case (3): T [[c e1 . . . en ]] 〈(case • of p1 → e ′

1 | · · · | pk → e ′
k ) : κ〉 ρ ∆ =

T [[e ′
i{x1 7→ e1 , . . . , xn 7→ en}]] κ ρ ∆ (pi = c x1 . . . xn)

Since 〈(case • of p1 → e ′
1 | · · · | pk → e ′

k ) : κ〉•(c e1 . . . en) ∈ sf ,
then ∀i ∈ {1 . . . n}.ei ∈ pf ′ ∧ ∀i ∈ {1 . . . k}.κ•ei ′ ∈ pf ′,
so κ•e ′

i{x1 7→ e1 , . . . , xn 7→ en} ∈ sf

Case (4): T [[λx → e]] 〈〉 ρ ∆ = λx→ (T [[e]] 〈〉 ρ ∆)

Since λx → e ∈ sf , then e ∈ pf , so e ∈ sf

Case (5): T [[λx → e]] 〈(• e ′) : κ〉 ρ ∆ = T [[e{x 7→ e ′}]] κ ρ ∆

Since 〈(• e ′) : κ〉•(λx → e) ∈ sf , then κ•e ∈ pf ∧ e′ ∈ pf ′,
so κ•e{x 7→ e ′} ∈ sf

Case (6a): T [[f ]] κ ρ ∆ = eσ if ∃(e = e′) ∈ ρ, σ.e′σ ≡ κ•f

No further transformation is performed.

Case (6b):
T [[f ]] κ ρ ∆ = T [[abstract(κ•f , e′)]] 〈〉 ρ ∆ if ∃(e = e′) ∈ ρ.e′ . κ•f

Since κ•f ∈ sf , then κ•f ∈ pf ′, so abstract(κ•f , e′) ∈ sf

Case (6c):
T [[f ]] κ ρ ∆ = f ′ x1 . . . xn

where
f ′ = λx1 . . . xn → (T [[∆(f )]] κ (ρ ∪ {f ′ x1 . . . xn = κ•f }) ∆)

otherwise

(f ′ is fresh, {x1 . . . xn} = fv(κ•f ))

Since κ•f ∈ sf ∧∆(f) ∈ pf , then κ•∆(f ) ∈ sf
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Case (7): T [[e e ′]] κ ρ ∆ = T [[e]] 〈(• e ′) : κ〉 ρ ∆

Since κ•(e e ′) ∈ sf , then 〈(• e ′) : κ〉•e ∈ sf

Case (8): T [[case e0 of p1 → e1 | · · · | pn → en ]] κ ρ ∆ =
T [[e0]] 〈(case • of p1 → e1 | · · · | pn → en) : κ〉 ρ ∆

Since κ•(case e0 of p1 → e1 | · · · | pn → en) ∈ sf ,
then 〈(case • of p1 → e1 | · · · | pn → en) : κ〉•e0 ∈ sf

Case (9): T [[let x = e0 in e1 ]] κ ρ ∆ = let x = (T [[e0 ]] 〈〉 ρ ∆) in (T [[e1 ]] κ ρ ∆)

Since κ•(let x = e0 in e1 ) ∈ sf ,
then e0 ∈ pf ′ ∧ κ•e1 ∈ pf ′, so e0 ∈ sf ∧ κ•e1 ∈ sf
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Abstract

The reachability problem for Petri nets is a central problem of net
theory. The problem is known to be decidable by inductive invariants
definable in the Presburger arithmetic. When the reachability set is de-
finable in the Presburger arithmetic, the existence of such an inductive
invariant is immediate. However, in this case, the computation of a Pres-
burger formula denoting the reachability set is an open problem. Recently
this problem got closed by proving that if the reachability set of a Petri
net is definable in the Presburger arithmetic, then the Petri net is flatable,
i.e. its reachability set can be obtained by runs labeled by words in a
bounded language. As a direct consequence, classical algorithms based on
acceleration techniques effectively compute a formula in the Presburger
arithmetic denoting the reachability set.

1 Introduction

Petri Nets are one of the most popular formal methods for the representation and
the analysis of parallel processes [1]. The reachability problem is central since
many computational problems (even outside the realm of parallel processes)
reduce to this problem. Sacerdote and Tenney provided in [14] a partial proof of
decidability of this problem. The proof was completed in 1981 by Mayr [13] and
simplified by Kosaraju [8] from [13,14]. Ten years later [9], Lambert provided a
further simplified version based on [8]. This last proof still remains difficult and
the upper-bound complexity of the corresponding algorithm is just known to
be non-primitive recursive. Nowadays, the exact complexity of the reachability
problem for Petri nets is still an open-question. Even an Ackermannian upper
bound is open (this bound holds for Petri nets with finite reachability sets [2]).

Basically, a Petri net is a pair (T, cinit) where T ⊆ Nd × Nd is a finite set
of transitions, and cinit ∈ Nd is the initial configuration. A vector c ∈ Nd is
called a configuration. The semantics of Petri nets is defined as follows. A
transition t = (a,a′) is said to be fireable from a configuration x if x ≥ a.

We introduce the binary relation
t−→ over the configurations in Nd defined by

x
t−→ x′ if t is fireable from x and x′ = x − a + a′. A run from a configuration

∗Work funded by ANR grant REACHARD-ANR-11-BS02-001.
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x to a configuration x′ labelled by a word σ = t1 . . . tk of transitions tj ∈ T
is a sequence (c0, t1, c1, . . . , tk, ck) where c0, . . . , ck are configurations such that

c0 = x, ck = x′, and such that cj−1
tj−→ cj for every 1 ≤ j ≤ k. When x is the

initial configuration, the configuration x′ is said to be reachable. The reachability
set is the set of reachable configurations.

p1

p2

p3
p4

p5

2

Figure 1: The Hopcroft and Pansiot net.

Example 1.1. The Petri net depicted in Figure 1 was introduced in [7] as
an example of Petri net having a reachability set which cannot be defined by a
formula in the logic FO (N,+), called the Presburger arithmetic. In fact, the set
of reachable configurations is equal to:

{
(p1, p2, p3, p4, p5) ∈ N5 | ( p1 = 1 ∧ p4 = 0 ∧ 1 ≤ p2 + p3 ≤ 2p5 ) ∨

( p1 = 0 ∧ p4 = 1 ∧ 1 ≤ p2 + 2p3 ≤ 2p5+1 )

}

Recently, in [10], the reachability sets of Petri nets are proved to be almost
semilinear, a class of sets that extends the class of Presburger sets (the sets
definable in FO (N,+)) inspired by the semilinear sets [5]. Note that in general
reachability sets are not definable in the Presburger arithmetic [7] (see Exam-
ple 1.1). An application of the almost semilinear sets was provided; a final
configuration is not reachable from an initial one if and only if there exists a
forward inductive invariant definable in the Presburger arithmetic that contains
the initial configuration but not the final one. Since we can decide if a Presburger
formula denotes a forward inductive invariant, we deduce that there exist check-
able certificates of non-reachability in the Presburger arithmetic. In particular,
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there exists a simple algorithm for deciding the general Petri net reachability
problem based on two semi-algorithms. A first one that tries to prove the reach-
ability by enumerating finite sequences of actions and a second one that tries
to prove the non-reachability by enumerating Presburger formulas. Such an al-
gorithm always terminates in theory but in practice an enumeration does not
provide an efficient way for deciding the reachability problem. In particular the
problem of deciding efficiently the reachability problem is still an open question.

When the reachability set is definable in the Presburger arithmetic, the exis-
tence of checkable certificates of non-reachability in the Presburger arithmetic is
immediate since the reachability set is a forward inductive invariant (in fact the
most precise one). The problem of deciding if the reachability set of a Petri is de-
finable in the Presburger arithmetic was studied twenty years ago independently
by Dirk Hauschildt during his PhD [6] and Jean-Luc Lambert. Unfortunately,
these two works were never published. Moreover, from these works, it is difficult
to deduce a simple algorithm for computing a Presburger formula denoting the
reachability set when such a formula exists.

For the class of flatable Petri nets [3, 12], such a computation can be per-
formed with accelerations techniques. Let us recall that a Petri net is said to
be flatable if there exist some words σ1, . . . , σk ∈ T ∗ such that every reachable
configuration is the target of a run labeled by a word in σ∗1 . . . σ

∗
k from the initial

configuration (A language included in σ∗1 . . . σ
∗
k is said to be bounded [4]). Accel-

eration techniques provide a framework for deciding reachability properties that
works well in practice but without termination guaranty in theory. Intuitively,
acceleration techniques consist in computing with some symbolic representa-
tions transitive closures of sequences of actions. For Petri nets, the Presburger
arithmetic is known to be expressive enough for this computation. As a direct
consequence, when the reachability set of a Petri net is computable with accel-
eration techniques, this set is necessarily definable in the Presburger arithmetic.
In [12], we proved that a Petri net is flatable if, and only if, its reachability set
is computable by acceleration.

Recently, we proved that many classes of Petri nets with known Presburger
reachability sets are flatable [12] and we conjectured that Petri nets with reacha-
bility sets definable in the Presburger arithmetic are flatable. In [11] the conjec-
ture get closed positively. As a direct consequence, classical acceleration tech-
niques always terminate on the computation of Presburger formulas denoting
reachability sets of Petri nets when such a formula exists.
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Alpuente, editor, Proc. of WFLP’2000, pages 344–365, 2000.

[4] S. Ginsburg and E. H. Spanier. Bounded regular sets. Proceedings of the American
Mathematical Society, 17(5):1043–1049, 1966.

[5] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas and
languages. Pacific Journal of Mathematics, 16(2):285–296, 1966.

[6] Dirk Hauschildt. Semilinearity of the Reachability Set is Decidable for Petri Nets.
PhD thesis, University of Hamburg, 1990.

[7] John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-
dimensional vector addition systems. Theoritical Computer Science, 8:135–159,
1979.

[8] S. Rao Kosaraju. Decidability of reachability in vector addition systems (prelim-
inary version). In Proc. of STOC’82, pages 267–281. ACM, 1982.

[9] Jean Luc Lambert. A structure to decide reachability in petri nets. Theoretical
Computer Science, 99(1):79–104, 1992.
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[12] Jérôme Leroux and Grégoire Sutre. Flat counter automata almost everywhere! In
Proc. of ATVA’05, volume 3707 of LNCS, pages 489–503. Springer, 2005.

[13] Ernst W. Mayr. An algorithm for the general petri net reachability problem. In
Proc. of STOC’81, pages 238–246. ACM, 1981.

[14] George S. Sacerdote and Richard L. Tenney. The decidability of the reachability
problem for vector addition systems (preliminary version). In Proc. of STOC’77,
pages 61–76. ACM, 1977.

77



Transforming EVENT B Models into Verified
C# Implementations
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Abstract

The refinement-based approach to developing software is based on the correct-
by-construction paradigm where software systems are constructed via the step-by-
step refinement of an initial high-level specification into a final concrete specifica-
tion. Proof obligations, generated during this process are discharged to ensure the
consistency between refinement levels and hence the system’s overall correctness.

Here, we are concerned with the refinement of specifications using the EVENT B
modelling language and its associated toolset, the RODIN platform. In particular,
we focus on the final steps of the process where the final concrete specification is
transformed into an executable algorithm. The transformations involved are (a) the
transformation from an EVENT B specification into a concrete recursive algorithm
and (b) the transformation from the recursive algorithm into its equivalent iterative
version. We prove both transformations correct and verify the correctness of the
final code in a static program verification environment for C# programs, namely
the Spec# programming system.

1 Introduction
EVENT B is a formal modelling language developed by Abrial [1]. Key features of
EVENT B are the use of set theory as a modelling notation, the use of refinement to
represent software systems at different abstraction levels and the use of mathematical
proof to verify consistency between refinement levels. This mathematical proof is typi-
cally achieved in a semi-automated way, with the user interacting with theorem proving
tools using the RODIN platform. The final concrete representation of the system re-
sults from discharging accumulated proof obligations, which are recorded as invariants
of the system under development.

In this paper, we focus on the transformation of the final concrete specification
into an executable algorithm. We present the transformations for (a) transforming an
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EVENT B specification into a recursive algorithm and (b) transforming from that recur-
sive program to an iterative version of the same program. We prove both transforma-
tions correct and verify the correctness of the final code in a static program verification
environment for C# programs, namely the Spec# programming system. This work is a
component of our general framework for integrating two popular approaches to formal
software development. In this framework we combine the efforts of program refine-
ment as supported by EVENT B and program verification as supported by the Spec#
programming system. The architecture induces a methodology [12], which improves
the usability of formal verification tools for the specification, the construction and the
verification of correct sequential algorithms.

In the sections that follow, we provide an overview of EVENT B, our integrated de-
velopment framework and the transformations that form an essential component of the
transformation of concrete specifications into an executable recursive program. Finally,
we present the iterative program verified in the automatic program verification envi-
ronment of the Spec# programming system.This verification ensures that the generated
program is correct with respect to the initial EVENT B abstract model.

2 The EVENT B Modelling Framework
EVENT B [1] is a formal method for system-level modelling and analysis. An EVENT B
model is defined via contexts and machines. As shown in Figure 1, machines express
dynamic information about the model via events, which modify state variables that are
defined in the contexts. Machines may also express other properties, such as invariant
and safety properties of the model.

An event is equivalent to a reactive action waiting for a condition (called a guard)
to hold in order to trigger an action. It has three main parts: a list of local parame-
ters, a guard G and a relation R over values of state variables denoted pre-values (x)
and post-values (x′). When the guard holds the actions in the event body modify the
state variables according to the relation R. The before–after predicate BA(e)(x, x′)
associated with each event describes the event as a logical predicate for expressing the
relationship linking values of the state variables just before, and just after, the execution
of event e. We indicate the ith action in each event using the prefix acti. The most
common event representation has the form

ANY t WHERE G(t, x) THEN x : |(R(x, x′, t)) END

where t is a local parameter and the event actions establish x : |(R(x, x′, t)). The
form is semantically equivalent to ∃ t· (G(t, x) ∧ R(x, x′, t)).

These basic structures are extended by the refinement process, which provides a
mechanism for relating an abstract model and a concrete model by adding new events or
by adding new variables. This mechanism allows the gradual development of EVENT B
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MACHINE specquare
SEES square0
VARIABLES
r

INVARIANTS
inv1 : r ∈ N

EVENTS
EVENT INITIALISATION

BEGIN
act1 : r := 0

END
EVENT square computing

BEGIN
act1 : r := n ∗ n

END
END

CONTEXT square0
CONSTANTS

n
AXIOMS

axm1 : n ∈ N
END

• square0 is a context defining properties of a natu-
ral number n

• specsquare is a machine with an event
square computing computing the square function
for n and assigning the value to r.

• The SEES clause related the context and the ma-
chine.

Figure 1: EVENT B structure: context and machine

models and the validation of each decision step. The refinement of a formal model
allows us to enrich our formal reactive models via a step-by-step approach and is the
foundation of our correct-by-construction approach [7]. Refinement provides a way
to strengthen invariants and to add details to a model. It is also used to transform an
abstract model to a more concrete version by modifying the state description.

Refinement is achieved by extending the list of state variables (and possibly sup-
pressing some of them), by refining each abstract event to a set of possible concrete
versions, and by adding new events. The abstract (x) and concrete (y) state variables
are linked by means of a gluing invariant J(x, y), which must be maintained through-
out the system modelling. A number of proof obligations ensure that each abstract event
is correctly refined by its corresponding concrete version, each new event refines skip,
no new event takes control forever and relative deadlock freedom is preserved. The
refinement relationship is expressed as follows: a model M is refined by a model P ,
when P simulates M . The final concrete model is close to the behaviour of the final
software system that executes events using real source code. In this paper we present
the translation of these concrete models to recursive and iterative algorithms that can be
directly mapped to code.

The EVENT B modelling language is supported by the Atelier B [3] environment
and by the RODIN platform [14] . Atelier B and the RODIN platform both provide fa-
cilities for editing contents and machines, refinements, contexts and projects, for gener-
ating proof obligations corresponding to a given property, for proving proof obligations

80



Transforming EVENT B Models into Verified C# Implementations D. Méry, R. Monahan

in an automatic or/and interactive process and for animating models.

3 Implementing EVENT B models
Our integrated development framework for implementing abstract EVENT B models
brings together the strengths of the refinement based approaches and verification based
approaches to software development. In particular, our framework supports:

1. Splitting the abstract specification to be solved into its component specifications.

2. Refining these specifications into a concrete model using EVENT B and the
RODIN platform.

3. Transforming the concrete model into recursive and iterative algorithms that can
be directly implemented as real source code.

4. Verifying the iterative algorithm in the automatic program verification environ-
ment of Spec#.

In this paper we focus on the transformations involved in item number three above.
First we provide an overview of our integrated development framework to help set the
context of our work.

3.1 An overview of our integrated development framework
Figure 2 provides an overview of our framework for refinement based program verifica-
tion. The problem to be solved is stated as a collection of method contracts, in the form
of a Spec# program. Spec# is a formal language for API contracts (influenced by JML,
AsmL, and Eiffel), which extends C# through a rich assertion language that allows the
specification of objects through class invariants, field annotations, and method speci-
fications [8, 2]. Method preconditions, annotated with the keyword requires, express
the constraints under which the method will execute correctly. Method postconditions,
annotated with the keyword ensures, express what should happen as a result of the
methods proper execution. The post-condition of methods may refer to the return value
of a method using the keyword result. The type of the value stored in result must be a
subtype of the method’s return type. Note also that variables in post-conditions can be
prefixed with the keyword old e.g., x = old(x) + 1 indicates that the new value of x is
the old value incremented by 1.

Spec# comes with a sound programming methodology that permits the extended
static verification of specifications and their implementations. This process is repre-
sented by the arrow labelled checking in Figure 2. Dynamic analysis allows the com-
piler to emit run-time checks at compile time, recording the assertions in the specifi-
cation as meta-data for consumption by downstream tools. This allows the analysis
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of program correctness before allowing the program to be run. Internally, it uses an
automatic SMT solver (such as Simplify [6] or Z3 [5]) that analyses the verification
conditions to prove the correctness of the program or find errors in it.

Note that in the traditional verification approach, the programmer provides both the
specification and its implementation. In our integrated development framework we use
model refinement in Event B to construct the Spec# implementation from its specifica-
tion. This refinement also generates the proof obligations that must be discharged as
part of the verification. We add these as invariants and assertions in the program so that
its verification is completely automatic with the Spec# programming system. The result
is a program, from which we can obtain a cross-proof, which verifies that the refinement
process generates a program, which correctly implements its contract.

pre/post
(Spec# contract)

PREPOST
(Event B machine)

CONTEXT
(Event B context)

PROCESS
(Event B machine)

CONTROL
(Event B context)

ALGORITHM
(Recursive Algorithm)

program
(Spec# program)

OPTIMISED ALGORITHM
(Iterative Algorithm)

-call−as−event

?

checking

-SEES

6
REFINES

-SEES

?

generating−algorithm

6
EXTENDS

?

removing recursion

�translating

Figure 2: The specification and implementation of an algorithm containing a loop.

The refinement square (with nodes PREPOST, CONTEXT, PROCESS and
CONTROL) in Figure 2, provides the mechanism for deriving annotations via refine-
ment. It can be explained briefly as follows:

• The EVENT B machine PREPOST contains events, which have the same con-
tract as that expressed in the original pre/post contract. This machine SEES the
EVENT B CONTEXT, which expresses static information about the machine.
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• The EVENT B machine PROCESS refines PREPOST generating a concrete
specification that satisfies the contract. This machine SEES the EVENT B context
CONTROL, which adds control information for the new machine.

• The labelled actions REFINES, SEES and EXTENDS, are supported by the
RODIN platform and are checked completely using the proof assistant provided
by RODIN.

The result of the refinement is the EVENT B machine PROCESS, which contains the
refined events and the proof obligations that must be discharged in order to prove that
the refinement is correct. The transformation of this EVENT B machine PROCESS into
a concrete iterative OPTIMISED ALGORITHM is achieved via two transformations
which we present in the sections that follow:

1. Transformation of an EVENT B machine into a concrete recursive algorithm (rep-
resented by the arrow labelled generating-algorithm).

2. Transformation of this recursive algorithm into its equivalent partially annotated
and iterative algorithm (represented by the arrow labelled removing recursion).

4 Generating a recursive algorithm from the EVENT B
machine

As seen in Figure 2 the result of the refinement is a concrete machine which contains
events and their associated proof obligations. Our approach to generating the recursive
algorithm depends on the format of these events and is determined by using the pre/post
contract of the calling procedure. The event’s format may be deterministic, may contain
a recursive call of the procedure under development, or may contain a call to another
procedure which may (or may not) be already developed. The translation of each event
into a computable structure is based on a systematic transformation using control labels.
Each event is characterised by a current label and a next label. These control labels are
added as annotations in the event, their purpose being to simulate the different steps of
the computation. The computation of the recursive algorithm is described by the acyclic
graph of labels describing the set of events used in the computation.

4.1 Generating the machines computation graph
Each event e annotates one link in the computation graph, joining nodes that represent
the event’s pre and post labels. If e annotates the link `1

e−→ `2, then the guard of e
contains a predicate ` = `1 and the action of e contains ` := `2. From a label `1, the
set of possible events that can be observed is denoted by E(`1). The set of target labels,
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L(`1), are those labels that can be directly reached from `1 by an event of E(`1). The
graph of labels annotated by events, denoted (L, E ,−→), is built in a way such that the
label start (representing the initial event) has no incoming labels and the label end has
no outgoing labels. A further property of the graph is that, for any label ` ∈ L, there is
a path from label start to end via label `. Moreover, the graph has no cycles since we
use recursive calls. This acyclic nature of the graph leads to a recursive version of the
algorithm that implements the specification.

For every label in the graph there exists, by construction, a bottom label. The bottom
label satisfies the following property: If there is a path from `1 to `2 via each `3 ∈ L(`1),
and a path that leads directly from `1 to `2 then the bottom label `2 is unique. This
bottom label is denoted by ⊥(`1).

4.2 Deriving the Recursive Program

The next step is to derive a programming structure from the
graph. As the graph is acyclic, we derive a program that ini-
tially consists only of if statements as illustrated. If we con-
sider the label `1 we have the following general pattern:

• The set of labels in L(`1) is {`31, . . . , `3n}.

• The guard of the event labelling the link from `1 to `3i
is denoted by ` = `1 ∧ g`1,`3i(x) where x is a variable
parameter of the guard.

• The sentence ` = `1 is removed in the translation.

• comp`3i denotes the result of the translation from `3i.

The translation process uses the labelled graph of events for
translating events into programming structures (hence defin-
ing what the statements act`3i are). It achieves this by apply-
ing a rule for each label `, in each of the three following sce-
narios: basic events, recursive calls and non recursive calls.
We discuss these three scenarios below.

/ ∗ ` = `1
IF act`31
/ ∗ ` = `31
comp`31

ELSIF act`32
/ ∗ ` = `32
comp`32

ELSIF act`3i
/ ∗ ` = `3i
comp`3i
. . .

ELSE act`3n
/ ∗ ` = `3n
comp`3n

FI
/ ∗ ` = ⊥(`1)

4.2.1 Case 1:Basic Events

If the event e is a basic event controlling the state of the variable x, guarded by g`1,`2(x)
and modified by the assignment x := f`1,`2 where f is a function, the event e takes the
form below.
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EVENT e
WHEN
` = `1
g`1,`2(x)

THEN
` := `2
x := f`1,`2(x)

END1

The translation omits the control variable `, introduces an
IF statement using the guard as the condition and translates
the assignment to the target programming language as long
as the function f`1,`2 is implementable. If the event e la-
bels the link `1

e−→ `2 then the statement act`2 is defined
as WHEN g`1,`2(x) THEN x := f`1,`2(x).
The function f`1,`2 must be deterministic and translated by
an expression definable in some programming language.
The EVENT B models are designed to satisfy this hypoth-
esis. If the writer of the models can not remove the non-
determinism, the event falls into the two possible next cat-
egories.

4.2.2 Case 2: Recursive Call of the Procedure

EVENT rec%PROC(h(x),y)%P(y)
ANY y
WHEN

` = `1
g`1,`2(x, y)

THEN
` := `2
x := f`1,`2(x, y)

END1

The definition of the event e is not executable
and the translation is driven by instances of the
control variable ` in the guard (as ` = `1) and
in the assignment (` := `2). The statement
act`2 is therefore defined as: PROC(h(x), y).
The choice of the event name is the responsibil-
ity of the writer of the EVENT B models, who
must identify the case corresponding to a recur-
sive call. RODIN authorizes any string and we
choose to indicate as much as possible

the category of the event (using the keyword rec) to facilitate the translation into the
programming language. The name is meaningful and annotates the EVENT B models.
Note that it is possible that other occurrences of rec%PROC(h(x), y)% start from the
same label and lead to the same post-label. For instance, if the postcondition P (y)
holds in one possible event, then another event, with the same pre-label and post-label,
may occur with ¬P (y). In this case, the two events are translated into one call.

4.2.3 Case 3: Non Recursive Call

In the third and final case, the event e can be transformed into a call of another proce-
dure. The call is expressed by an event e, which we name call%APROC(h(x), y)%P (y)
and the statement act`2 is defined as APROC(h(x), y).
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EVENT call%APROC(h(x),y)%P(y)
ANY y
WHEN
` = `1
g`1,`2(x, y)

THEN
` := `2
x := f`1,`2(x, y)

END1

However, the procedure APROC should al-
ready be defined (or at least specified) by
an EVENT B machine PREPOST. We con-
sider that there is a tree-like structure of sub-
procedures under development and we de-
velop the identified procedure APROC in the
same way. This last case provides a way to
define a hierarchical structure of procedures,
which are developed using the same method-
ology.

In summary, the annotated, and possibly recursive algorithm ALGORITHM is de-
rived from the PROCESS machine by a systematic transformation using the control
labels to simulate the different steps of the computation. The next step is the transfor-
mation of ALGORITHM, into a partially annotated and non recursive OPTIMISED
ALGORITHM. This transformation will be presented in the section that follows.

5 Transforming the recursive algorithm into an itera-
tive one

A recursive procedure named APROC can be transformed into a non-recursive proce-
dure named BPROC via a transformation T as follows T (APROC) = BPROC. The
source and target of the transformation are stated below in Figure 3. The transformation
T produces a new procedure without recursive calls and preserves the partial correct-
ness with respect to the pre and post specification. It must preserve the operational
semantics of the algorithms. This is, if [[A]] is the function denoting the procedure A
then [[T (A)]] = [[A]]. The permitted states are expressed as the set Σ = V → VALUES,
where V is the set of variables of the procedure and VALUES are their values.

Theorem 1. The transformation is sound with respect to the pre and post specification.

We consider the macro-expansion corresponding to the call APROC(x, y) leading
to the set of variables as V = x∪ z∪y where the initial values of x, y, and z are x0, y0,
and z0. We prove that [[APROC]] = [[BPROC]] by considering two cases.

CASE 1 No iteration: Consider that C(x0) is true. Then [[BPROC]](x0, y0, z0) =
g(x0), since the WHILE loop is not possible and the post processing leads to y = g(x0).

CASE 2 Iteration: Consider that a sequence of values of x, namely x0 . . . xn, lead
to a value such that either C(xn) is true or D(xn) is true, causing the loop to stop
iterating. The relation between these values are defined by two sub-cases as follows:
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PROCEDURE APROC(x;VAR y)
PRECONDITION P (x)
POSTCONDITION Q(x, y)
BEGIN
LOCAL VARIABLES z
IF C(x) THEN

y := g(x);
ELSE

z := h(x, z);
IF D(x, z) THEN

y := f(x, z)
ELSEIF E(x, z) THEN

APROC(f1(x), y)
ELSE

APROC(f2(x), y)
ENDIF

END

PROCEDURE BPROC(x;VAR y)
PRECONDITION P (x)
POSTCONDITION Q(x, y)
BEGIN
LOCAL VARIABLES z
WHILE not C(x) ∧ not D(x, z) DO

z := h(x, z);
IF E(x, z) THEN

x := f1(x);
ELSE

x := f2(x);
ENDIF

ENDDO
IF C(x) THEN

y := g(x);
ELSEIF D(x, z) THEN

y := f(x, z);
ELSEIF E(x, z) THEN

y := f1(x);
ELSE

y := f2(x);
ENDIF

END

Figure 3: Transformation

Sub-case 2.1: The sequence is terminated by C(xn) and no value of (xi, zi) satis-
fies D(xi, zi). Hence the following properties hold:

1. ∀i ∈ 0..n− 1.zi+1 = h(xi, zi)

2. ∀i ∈ 0..n− 1.xi+1 = fki
(xi) with ki = 1 if E(xi−1, zi−1)

3. ∀i ∈ 0..n− 1.xi+1 = fki
(xi) with ki = 2 if ¬E(xi−1, zi−1)

4. ∀i ∈ 0..n.¬D(xi, zi)

The result y is therefore set by the statement y = g(xn). Hence [[APROC]](x0) =
g(xn).

Next, we consider the procedure BPROC executed under the same conditions: We
build the same sequence of values for x and z, which ensures that the loop terminates
when C(xn) ∧ ¬D(xn, zn). Since the value xn satisfies C(xn), the next statement
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executed is y := g(x) giving y the final value g(xn). Therefore, [[APROC]](x0) =
[[BPROC]](x0).

Sub-case 2.2: The sequence is terminated by D(xn, zn) and no value of xi satisfies
C(xi). Hence the following properties hold:

1. ∀i ∈ 0..n− 1.zi+1 = h(xi, zi)

2. ∀i ∈ 0..n− 1.xi+1 = fki(xi) with ki = 1 if E(xi−1, zi−1)

3. ∀i ∈ 0..n− 1.xi+1 = fki
(xi) with ki = 2 if ¬E(xi−1, zi−1)

4. ∀i ∈ 0..n.¬C(xi)

5. ∀i ∈ 0..n− 1.¬D(xi, zi)

The value xn satisfies D(xn, zn) and the result y is therefore set by the state-
ment y = f(xn, zn+1). Hence, [[APROC]](x0) = f(xn, zn+1). Similar reasoning
on BPROC leads to termination of the loop when D(xn, zn) and ¬C(xn). The next
statement executed is the assignment y = f(xn, zn+1). Hence, [[APROC]](x0) =
[[BPROC]](x0).

By the reasoning applied to both cases above, the overall transformation of APROC
into BPROC is sound. We illustrate our approach by using a transformation for remov-
ing recursion in a given case. In the next section, we illustrate the approach on the
binary search problem.

6 Case Study: Binary Search Problem
The binary search problem is a classic algorithmic problem. We reformulate the de-
velopment of a solution and illustrate the use of the transformation rules for removing
recursive calls from the algorithm generated from the EVENT B machine.

6.1 Specifying the binary search problem
The input parameters of the binsearch procedure are: a sorted array t; the bounds of
the array within which the algorithm should search (lo and hi); and the value for which
the algorithm should search (val). Output parameters are result and a boolean flag ok
that indicates if t(result) = val. The procedure pre and post conditions are presented
below in Algorithm 1.

The array t is sorted with respect to the ordering over integers and a simple induc-
tive analysis is applied leading to a binary search strategy. The specification is first ex-
pressed by two events corresponding to the two possible cases: either a key exists in the
array t containing the value val, or there is no such key. These two events correspond to
the two possible resulting calls to the procedure binsearch(t, val, lo, hi; ok, result):
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Algorithm 1: binsearch(t, val, lo, hi, ok, result)

precondition :




t ∈ 0..t.Length −→ N
∀k.k ∈ lo..hi− 1⇒ t(k) ≤ t(k + 1)
val ∈ N
l, h ∈ 0..t.Length
lo ≤ hi




postcondition :
(

ok = TRUE ⇒ t(result) = val
ok = FALSE ⇒ (∀i.i ∈ lo..hi⇒ t(i) 6= val

)

• EVENT find is binsearch(t, val, lo, hi; ok, result) with ok = TRUE

• EVENT fail is binsearch(t, val, lo, hi; ok, result): with ok = FALSE

EVENT find
ANY j
WHERE

grd1 : j ∈ lo .. hi
grd2 : t(j) = val

THEN
act1 : ok := TRUE
act2 : i := j

END

EVENT fail
WHEN

grd1 : ∀k ·k ∈ lo .. hi⇒ t(k) 6= val
THEN

act1 : ok := FALSE
END

These two events form the machine called binsearch1 (which corresponds to the
PREPOST machine of Figure 2). This machine is refined to obtain binsearch2 (which
corresponds to PROCESS of Figure 2). This refined machine contains a new control
variable, l, which simulates how the binary search is achieved.

6.2 Refinement for Computation
The two events EVENT find and EVENT fail are refined according to the following
diagram. Note that computations are controlled by the new control variable l, which
takes on the values start, middle and end to define the possible computation paths of
the algorithm. We consider eight possible scenarios within this refinement diagram:
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1.




l = start
lo = hi

t(lo) = val


 m1−→




l = end
lo = hi

ok = TRUE ∧ result = lo




2.




l = start
lo = hi

t(lo) 6= val


 m2−→




l = end
lo = hi

ok = FALSE




3.
(

l = start
lo < hi

)
split−→




l = middle
lo < hi

mi = (lo+ hi)/2




4.




l = middle
lo < hi

mi = (lo+ hi)/2
val < t(mi)




rec(lo,mi−1,val,ok,result)−→
(

l = end
ok = TRUE ∧ t(result) = val

)

5.




l = middle
lo < hi

val < t(mi)


 rec(lo,mi−1,val,ok,result)−→

(
l = end ∧ ok = FALSE
∧(∀i.i ∈ lo..hi⇒ t(i) 6= val

)

6.




l = middle
lo < hi

mi = (lo+ hi)/2
val = t(mi)




m3−→
(

l = end
ok = TRUE ∧ result = mi

)

7.




l = middle
lo < hi

mi = (lo+ hi)/2
val > t(mi)




rec(mi+1,hi,val,ok,result)−→
(

l = end
ok = TRUE ∧ t(result) = val

)

8.




l = middle
lo < hi

mi = (lo+ hi)/2
val > t(mi)




rec(mi+1,hi,val,ok,result)−→
(

l = end ∧ ok = FALSE
∧(∀i.i ∈ lo..hi⇒ t(i) 6= val

)

Each of these scenarios are used to generate the refined events in the concrete ma-
chine binsearch2 with event names corresponding to the labels on the arrows in each
scenario.
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6.3 Generating the algorithm from events
The events of the machine called binsearch2 are listed below. Note that events m1, m2,
split and m3 correspond directly with scenarios 1, 2, 3 and 6.

EVENT m1 REFINES find
WHEN
grd1 : l = start
grd2 : lo = hi
grd3 : t(lo) = val

WITNESSES
j : j = lo

THEN
act1 : l := end
act2 : ok := TRUE
act3 : i := lo

END

EVENT m3 REFINES find
WHEN

grd1 : l = middle
grd3 : t(mi) = val

WITNESSES
j : j = mi

THEN
act1 : l := end
act2 : ok := TRUE
act3 : i := mi

END

EVENT m2 REFINES fail
WHEN
grd1 : l = start
grd2 : lo = hi
grd3 : t(lo) 6= val

THEN
act1 : l := end
act2 : ok := FALSE

END

EVENT split
WHEN

grd1 : l = start
grd2 : lo < hi

THEN
act1 : l := middle
act2 : mi := (lo + hi)/2

END

Scenarios 4 and 5 correspond to the case where val < t(mi) and hence the search
continues on the left part of the array. Two events will be generated for this case: one
where the value is found (OK = true), and one where the value is not found (OK =
false). Similarly scenarios 7 and 8 correspond to the case where val > t(mi) and the
search continues on the right part of the array. Again, two events will be generated for
this case: one where the value is found (OK = true), and one where the value is not
found (OK = false). We illustrate two of the four events below.
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EVENT rightsearchOK
REFINES find
ANY j
WHERE

grd1 : l = middle
grd2 : val > t(mi)
grd3 : j ∈ mi+ 1 .. hi
grd4 : t(j) = val
grd5 : mi+ 1 ≤ hi

THEN
act1 : i := j
act2 : ok := TRUE

END

EVENT rightsearchKO REFINES fail
WHEN

grd1 : l = middle
grd2 : val > t(mi)
grd4 : ∀j ·j ∈ mi+ 1 .. hi⇒ t(j) 6= val
grd5 : mi+ 1 ≤ hi

THEN
act2 : ok := FALSE

END

We identify that the translation from EVENT B into an algorithmic notation intro-
duces new proof obligations. These proof obligations state that the call is correct [15]
i.e. the current state implies that the precondition is true. In the case of our example,
we prove that each guard of rightsearchOK and rightsearchKO implies the precondition of
the algorithm: the theorems labelled thcall1 and thcall2, in the invariant below, express
the discharged conditions.

Using the control variable l, we can apply our generating-algorithm transforma-
tion to produce the recursive algorithm. The result is Algorithm 2 below which is de-
rived from the refined EVENT B model binsearch2. The control variable l is removed
by introducing control via if statements.

Finally, using RODIN we prove that the following assertion is an invariant for our
model and hence it can be used for inferring the invariant of the generated code.

inv1 : i ∈ 1 .. n
inv2 : l ∈ LOC
inv3 : dom(t) = 1 .. n
inv4 : mi ∈ 1 .. n
inv5 : l = middle⇒ lo < hi ∧mi ∈ lo .. hi
inv6 : l = middle ∧ val < t(mi)⇒ (∀k ·k ∈ mi .. hi⇒ t(k) 6= val)
inv7 : l = middle ∧ val > t(mi)⇒ (∀k ·k ∈ lo .. mi⇒ t(k) 6= val)
inv8 : l = end ∧ ok = TRUE⇒ i ∈ lo .. hi ∧ t(i) = val
inv9 : l = end ∧ ok = FALSE⇒ (∀k ·k ∈ lo .. hi⇒ t(k) 6= val)
inv10 : lo .. hi ⊆ 1 .. n
thcall1 : (∃j ·l = middle ∧ j ∈ mi + 1 .. hi

∧key > t(mi) ∧ t(j) = key ∧mi + 1 ≤ hi)⇒mi + 1 ≤ hi
thcall2 : (∃j ·l = middle ∧ j ∈ lo .. mi− 1

∧key < t(mi) ∧ t(j) = key ∧ lo ≤ mi− 1)⇒ lo ≤ mi− 1

92



Transforming EVENT B Models into Verified C# Implementations D. Méry, R. Monahan

Algorithm 2: Recursive Algorithm binsearch(t,val,lo,hi,ok,result).

precondition :
(

n ∈ N1 ∧ lo, hi ∈ dom(t) ∧ lo ≤ hi
t ∈ 0 .. n− 1→ N ∧ ∀i.i ∈ 0..n− 2⇒ t(i) ≤ t(i + 1)

)

postcondition :
(

ok = true⇒ t(result) = val
ok = false⇒ (∀i.i ∈ lo..hi⇒ t(i) 6= val

)

local variables: mi ∈ Z

start :

(
n ∈ N1 ∧ lo, hi ∈ dom(t) ∧ lo ≤ hi
t ∈ 0 .. n− 1→ N ∧ ∀i.i ∈ 0..n− 2⇒ t(i) ≤ t(i + 1)

)

if lo = hi ∧ t(lo) = val then
result := lo; ok := true;

else
if lo = hi ∧ t(lo) 6= val then

ok := false;
else

mi := (lo + hi)/2;

middle :








mi = (lo + hi)/2
val < t(mi)⇒ ∀k.k ∈ mi..hi⇒ t(k) 6= val
val > t(mi)⇒ ∀k.k ∈ lo..mi⇒ t(k) 6= val







if t(mi) = val then
result := mi; ok := true;

else
if mi + 1 ≤ hi ∧ t(mi) < val then

binsearch(t,val,mi+1,hi,ok,result);
else

if lo ≤ mi− 1 ∧ t(mi) < val then
binsearch(t,val,lo,mi-1,ok,result);

else
ok:=FALSE

;

end :

{(
ok = true⇒ t(result) = val
ok = false⇒ (∀i.i ∈ lo..hi⇒ t(i) 6= val

)}
;

93



Transforming EVENT B Models into Verified C# Implementations D. Méry, R. Monahan

6.4 Transforming the Binary Search Recursive Procedure
In order to generate the iterative version of our algorithm, we apply the removing re-
cursion transformation. We identify the rules condition C as




lo = hi ∧ t(lo) = val
∨ lo = hi ∧ t(lo) 6= val
∨ lo < hi ∧mi = (lo + hi)/2 ∧ t(mi) = val




and obtain PROCEDURE binsearch(t, val, lo, hi, ok, result) as presented in Figure 4.

6.5 Interpreting the algorithms within Spec#
In order to fully utilize our integrated development framework for refinement based
program verification, we have translated the resulting iterative algorithm into Spec#.
As shown in Figure 5 this is almost a one-to-one mapping. The main difference in
the algorithms is that we simply return a value of −1 when our iterative algorithm
sets OK to false and return the index where the value is found when our iterative
algorithm sets OK to true. The algorithm verified as correct, in less than 2 seconds
using the Spec# programming system (version 2011-10-03). No user interaction is
required in the verification as all assertions required (preconditions, postconditions and
loop invariants) have been generated as part of the refinement and transformation of the
initial abstract specification into the final iterative algorithm. It is interesting to note
that, prior to formalising our transformation rules, our initial attempt at writing this
iterative C# program contained an error. This error in the loop body, was due to our
omission to check that the values of mi + 1 and mi − 1 were within the array bounds
before narrowing the search space. This error was immediately detected by the Spec#
programming system. The automatic verification of the final program is available online
at http://www.rise4fun.com/SpecSharp/psP4.

This verification step acts as an insurance check for the correct-by-construction ap-
proach in two ways. Firstly, while the Event B framework provides for the automatic
verification of some proof obligations, many proofs require the user to manually inter-
act with the tools to provide guidance.This often leads to error, typically introduced by
incorrect assumptions made by the user while proving a proof obligation. Having an
alternative verification tool that automatically verifies that the final implementation is
correct with respect to its specification re-assures the developer that their interactions
were correct at each stage of the development. Secondly, Event B is a modelling lan-
guage where data types, event guards and actions are logical structures based on set
theory. While the programming structures of Spec# have logical features, they also
have programming constraints that must be taken into account when translation from
the resulting iterative algorithm to a programming langauge. The cross verification in-
creases trust in the final product ensuring that the semantics of the original specification
is maintained.
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PROCEDURE binsearch(t, val, lo, hi, ok, result)

PRECONDITION




t ∈ 0..t.Length −→ N
∀k.k ∈ lo..hi− 1⇒ t(k) ≤ t(k + 1)
val ∈ N ∧ lo, hi ∈ 0..t.Length ∧ lo ≤ hi




POSTCONDITION

(
ok = TRUE ⇒ t(result) = val
ok = FALSE ⇒ (∀i.i ∈ lo..hi⇒ t(i) 6= val

)

BEGIN

WHILE not




lo = hi ∧ t(lo) = val
∨ lo = hi ∧ t(lo) 6= val
∨ lo < hi ∧mi = (lo + hi)/2 ∧ t(mi) = val


 DO

mi := (lo + hi)/2;

middle :








mi = (lo + hi)/2
val < t(mi)⇒ ∀k.k ∈ mi..hi⇒ t(k) 6= val
val > t(mi)⇒ ∀k.k ∈ lo..mi⇒ t(k) 6= val







IF mi + 1 ≤ hi ∧ val > t(mi) THEN
lo := mi + 1

ELSEIF lo ≤ mi− 1 ∧ val < t(mi) THEN
hi := mi− 1

ENDDO
IF lo = hi ∧ t(lo) = val THEN

result := lo; ok := true
ELSEIF lo = hi ∧ t(lo) 6= val THEN

ok := false
ELSEIF lo < hi ∧ t(mi) = val THEN

result := mi; ok := true
ELSE ok := false

ENDIF
END

Figure 4: PROCEDURE binsearch(t, val, lo, hi, ok, result)

7 Related Work
The topic of program transformation, and in particular, the transformation of recursive
programs to iterative ones is not new. In 1965, Gordon [16] investigated the tranforma-
tion of recursive relations to recurrence or iterative relations. He also addressed the
transformation of non primitive recursive functions (namely Ackerman’s function) into
iterative functions, opening a new domain of research on transformations and promoting
the use of recursive definitions of algorithms. Later Strong [9] specified the problem of
transforming recursive equations into iterative equations expressed by flowcharts while
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class BS {
int BinarySearch(int[] t, int val, int lo, int hi, bool ok)
requires 0 <= lo && lo < t.Length && 0 <= hi

&& hi < t.Length;
requires lo <= hi && 0 < t.Length;
requires forall {int i in (0:t.Length),

int j in (i:t.Length); t[i] <= t[j]};
ensures -1 <= result && result < t.Length;
ensures (0 <= result && result < t.Length)==>

t[result] == val;
ensures result == -1 ==>

forall {int i in (lo..hi); t[i] != val};
{

int mi = (lo + hi) / 2;
while (!(lo == hi && t[lo] == val)

|| ( lo == hi && t[lo] != val)
|| (lo < hi && (mi == (lo + hi) /2)

&& t[mi] == val))
invariant 0 <= lo && lo < t.Length && 0 <= hi

&& hi < t.Length;
invariant 0 <= mi && mi < t.Length;
invariant (val < t[mi]) ==>

forall {int i in (mi..hi); t[i] != val};
invariant (val > t[mi]) ==>

forall {int i in (lo..mi); t[i] != val};
{

mi = (lo + hi) /2;
if ((mi+1 <= hi) && (val > t[mi])) lo = mi +1;
else if ((lo <= mi-1) && (val < t[mi]))

hi = mi - 1;
}
if ((lo == hi) && (t[lo] == val))

{ok = true; return lo;}
else{

if ((lo == hi) && (t[lo] != val))
{ok = false; return -1;}

else if ((lo < hi) && (t[mi] == val))
{ok = true; return mi;}

else {ok = false; return -1;}
}

}
}

Figure 5: Binary Search C# program corresponding to the generated iterative procedure.
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Pettorossi [13], aimed to improve a program’s memory usage. Research by Darlington
and Burstall [4] proposed a list of transformations, which can be automatically applied
for removing recursive calls from a program.

Our work does not claim to discover new transformations. Instead we have ex-
tended these transformations within EVENT-B models to integrate a correctness phase
in the transformation. Our work relates two complementary frameworks: the program-
ming framework of C# and the modelling framework of EVENT-B. We promote the
development of annotated programs and present this as the main contribution over pre-
vious work. We consider that the recursive algorithms are easier to generate using our
approach and they can be easily transformed to get an efficient iterative solution.

In our seminal work on code generation [12] we have developed a shortest path al-
gorithm based on the dynamic programming paradigm where the discovery of program
invariants utilises the underlying inductive properties of the algorithm. The operational
aspect of the iterative solution is useful for improving the quality and efficiency of
the resulting code. This is our motivation for transforming our recursive algorithms
into iterative ones, obtaining their correctness for free using our integrated develop-
ment framework, that brings together the world of system modelling and the world of
program verification.

8 Conclusion

We have presented and verified the correctness of two transformation rules, which trans-
form EVENT B models into iterative algorithms. The resulting algorithms are correct-
by-construction and can be directly mapped into an executable programming language.
We provide a cross-proof by verifying the correctness of our final program using the
Spec# programming system. Our integrated development framework (Figure 2) indi-
cates where our transformations are used for producing a program that is correct-by-
construction. The translation of the PROCESS machine into a recursive algorithm is
straightforward and removes the control variable used to relate events when generating
the code.

This work builds on a method for code generation that is detailed by one of the au-
thors in [11, 12] and provides the foundation for an integrated development framework
that brings together the world of system modelling and the world of program verifi-
cation. The EB2ALL code generation tool [10] can also produce a program from the
PROCESS machine. However, the control variable is not removed and the resulting
code is not structured. The advantage of our approach is the production of a structured
iterative program, which can be automatically verified using the Spec# programming
system.

Our experience shows that our approach assists students in developing and under-
standing the tasks of software specification and verification. It also makes different
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forms of formal software development more accessible to the Software Engineers, help-
ing them to build correct and reliable software systems. Future work will include the
development of adequate plugins, which will integrate and facilitate the co-operation
between Spec# tools and RODIN tools.
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[10] D. Méry and N. Singh. eb2all.loria.fr, 2011.
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Abstract

This paper describes how to verify cryptographic protocols by a
general-purpose program transformation technique with unfolding. The
questions of representation and analysis of the protocols as prefix rewriting
grammars are discussed. In these aspects Higman and Turchin embeddings
on computational paths are considered, and a refinement of Turchin’s re-
lation is presented that allows to algorithmically decide the empty word
problem for prefix rewriting grammars.

1 Introduction

It is known that even in the case when algorithms of message encryption them-
selves are considered as completely secure some existing cryptographic protocols
that use them may be insecure. Many vulnerabilities in the protocols appear due
to the use of common communication channel that can be listened and analyzed
by someone other than the legal participants of the interaction. Although the
problem of automatic verification of such interactions is undecidable in general
[1], there were described some classes of protocols for which the verification task
can have a decision procedure. In particular, Dolev and Yao presented the ping-
pong model of the cryptographic protocols [2]. In a ping-pong protocol a message
is a single data item encrypted by a sequence of keys. Principals can apply a
finite number of encryption and decryption operations to the message. Dolev,
Yao and Karp showed that this protocol model can be verified in a polynomial
time if an intruder can listen the communication channel between agents and
participate in the interaction on every its stage [3]. Then the question appears
whether these verification results can be used while modelling the protocols not
only by special tools but by general-purpose program transformation tools.

A ping-pong protocol can be naturally presented as a prefix rewriting gram-
mar. The prefix-rewriting grammars are also used as function stack abstractions
in construction of loop approximations in program analysis (for example, in
V. Turchin’s works on supercompilation [10]). The main disctinction is that the
stack operations in supercompilation are modelled by a smaller class of the prefix
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grammars than the ping-pong protocols. But since Turchin’s statements remain
provable for the wider class of prefix grammars [7], the distinction becomes in-
significant.

In this paper we show how to solve the verification problem by the general
purpose program transformation technique without constructing any additional
tools. The only two actions to be performed by a technique are:

1. Unfolding a computational tree of a program.

2. Terminating too long computational paths in the tree to avoid infinite
unfolding 1.

This paper is organized as follows. First, we introduce the classical approach
to ping-pong protocol verification that uses finite automata. Then we discuss
different types of protocol representations as prefix rewriting grammars. After
that we show what difficulties appear in the verification of protocols as prefix
grammars by program transformation techniques that use unfolding together
with the scattered subword relation as a path termination criterion and discuss
how to avoid these difficulties by a small refinement of the criterion. Last, we
describe a way to construct prefix grammars with very long minimal tracks that
end with the empty word (these tracks represent attacks on the corresponding
protocol).

Our contribution is the following:

1. We show that Higman condition of path termination is too weak for suc-
cessful verification of ping-pong protocols (from the class introduced in [3])
in the form of the prefix grammars.

2. Basing on the Turchin relation we define a simple refinement for this condi-
tion. We prove that this refinement allows to verify any ping-pong protocol
from the class being considered.

2 Ping-Pong Protocols

Consider an information exchange between several participants that is controlled
by some interaction rules. Let ΣX be a set of actions that are available to a
participant X. Some actions from ΣX , such as encryption, decryption, letter
appending, etc, are elementary; these actions do not allow their decomposition
and are denoted by single letters. Other actions from ΣX are compositions of
elementary actions that are unavailable to X separately. This can happen, for
example, if a participant of interaction is a user of some specific cryptographic

1A description of these two techniques can be found in [9].
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program that does not allow him/her to use its encryption algorithm without
adding his/her personal information to the message to be encrypted. The com-
posite actions from ΣX are represented as words consisting of letters that denote
corresponding elementary actions.

Consider two participants S, R of an interaction. Let us denote an initial
single data item as M . Suppose S starts the interaction corresponding to a
protocol by sending R the message α1(M) where α1 ∈ Σ∗S . R responds by
α2(α1(M)) (α2 ∈ Σ∗R) and so on until the last action αn is reached; the message
is sent there and back as a ping-pong ball. The tuple 〈α1, . . . , αn〉 is called a
ping-pong protocol.

Definition 1. A ping-pong protocol P (S,R) (where S and R denote legal par-
ticipants of the protocol) is a sequence Γ = 〈α1, . . . , αn〉 of operator words, where
αi ∈ Σ∗S if i is odd and αi ∈ Σ∗R if i is even.

Some elementary actions in a sequence αi+1αi may partially cancel each
other. For example, consider the situation when both of the principals R, S
can encrypt a message by two different keys, but each principal knows only
one decryption key of the corresponding two. Then ΣS = {ER, ES , DS} and
ΣR = {ER, DR, ES}, where EX means encryption operation and DX means the
corresponding decryption action. Let the protocol be 〈ER, ESDR〉. If the initial
message is M then it is first transformed by S to ER(M) and then is transformed
by R to ES(M). Thus the sequence DRER collapses to the empty word (denoted
by Λ).

The cancellations satisfy the Church–Rosser property and thus can be done in
an arbitrary order. So we denote them as rules Rl → Rr, where Rl is a sequence
of operations to be transformed and Rr is the result of the transformation. E.g.
the previous cancellation rule can be denoted as DRER → Λ. Note that the
cancellations must not necessarily have the form xy → Λ; an action may be
cancelled not only by a single other action but also by a sequence of several
other actions.

Assume that an intruder Z can read any message x sent from S to R and vice
versa and can replace any such message x by a message β(x), where β ∈ Σ∗Z . A
protocol is insecure iff the intruder can get the initial message M .

Definition 2. A ping-pong protocol P (S,R) = 〈α1, α2, . . . , αn〉 is insecure iff
there is a sequence 〈β1, β2, . . . , βm〉, β1β2 . . . βm → Λ such that β1 = α1, and
either ∃j(βi = αj) and i ≡ j(mod2) or βi ∈ Σ∗Z . The sequence 〈β1, β2, . . . , βm〉
is called an attack on the protocol.

Note that we allow αi to appear more than once in an attack since an intruder
can initiate multiple interactions with principals.
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Example 1. Consider the following protocol Pa = 〈ba, b−1〉, where bb−1 → Λ
and b−1b→ Λ. Let ΣZ = {c, d} such that c = a−1a1 and a−1 is the left inverse
of a (a−1a→ Λ but not aa−1 → Λ), and d = ba. Then the protocol is insecure:
Z can get a when it is sent back from R to S, then send baa to R and receive
aa which collapses with c.

In the original paper [3] the following algorithm of protocol verification is
introduced. First, we build a nondeterministic finite state automaton that cor-
responds to the protocol in the following sense.

1. State 0 is the unique initial state and state 1 is the unique final state. The
input alphabet is Σ = ΣR ∪ ΣS ∪ ΣZ .

2. There is a directed path from 0 to 1 whose labels correspond to α1(S,R).

3. For every input letter σ ∈ ΣZ there is a self-loop from 0 to 0, labelled σ.
While we allow not only elementary actions in ΣZ , the self-loop can contain
several edges (in the original work only one-edge loops are considered).

4. For every αi ∈ P , there is a loop from 0 to 0 whose edges are labelled by
the letters of αi.

Example 2. Let us build such an automaton for the protocol Pa.

4

a

��
0

b

EE

b−1 $$

a−1

��

b
// 2 a

// 1

3

a−1

EE

Note that the action ba is repeated twice in the automaton.

Let us say that a path p collapses iff its corresponding word collapses to
Λ. For example, there is a collapsing path from the state (0 to the state 4)
since b−1b → Λ. The set of all collapsing paths is denoted by C. To verify the
protocol we must investigate whether (0, 1) ∈ C. The following algorithm solves
this problem [3].

1. Place in C all the pairs (i, i). Construct a queue Q which also contains all
these pairs in an arbitrary order.
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2. While Q 6= ∅ do

(a) Delete the first pair (i, j) from Q.

(b) If (j, k) ∈ C, (i, k) /∈ C, then place (i, k) in C and in Q.

(c) If (k, i) ∈ C, (k, j) /∈ C, then place (k, j) in C and in Q.

(d) If there is an edge k → i labelled τ and there is an edge j → l labelled
σ, and τσ → Λ and (k, l) /∈ C, then place (k, l) in C and in Q.

This algorithm terminates. The final C contains (0, 1) if and only if there
is a collapsing path from 0 to 1. But it can be noticed that the described type
of automata actually performs stack operations, since a finite number of first
symbols in the corresponding word is changed in every loop from 0 to 0. So
the automata can be rewritten as grammars of the special kind and it becomes
unnecessary to use special algorithms of analysis since there is a wide range of
transformation and analysis tools for this kind of the grammars.

Moreover, this automata algorithm has one restriction that naturally disap-
pears when the transition to grammars is made. The restriction is implied from
the action 2(d) of the algorithm. Since all the edges are marked with elementary
actions, only cancellations of the form xy → Λ are processed correctly. Thus
if we rewrite the conditions c = a−1a−1, a−1a → Λ from the Example 1 as
caa → Λ (and replace the loop from the state 0 to the state 3 and back to 0

by a self-loop marked c in the corresponding automaton) the algorithm cannot
find the attack on Pa. Thus, by the transition to grammar form we become
able not only to test a general-purpose program transformation technique on
the verification task but also to expand the class of protocols to be verified.

Let us denote letters of an alphabet Σ by the small Latin letters a, b, c, . . . , p,
q, r and the capital Latin letters A,B,C,D,E, F (maybe with subscripts or
superscripts), variables that can take some value from Σ as x, y, z, w, and let us
denote words from Σ∗ by the Greek capitals Γ,∆,Φ,Ψ,Θ.

Definition 3. Consider a tuple 〈Σ,R,Γ0〉, where Σ is an alphabet, Γ0 ∈ Σ+

is an initial word and R ⊂ Σ∗ → Σ∗ is a set of rewrite rules. If the rewrite

rules are applied only to word prefixes R : Φ −→ Ψ

ΦΘ
R−→ ΨΘ

then the tuple 〈Σ,R,Γ0〉 is

a prefix rewriting grammar.
We call a trace of a prefix rewriting grammar G = 〈Σ,R,Γ0〉 a sequence

{Φi} (finite or infinite), s.t. Φ1 = Γ0 and ∀i(i < n⇒ ∃R(R : Rl → Rr &
R ∈ R & Φi = RlΘ & Φi+1 = RrΘ).

Example 3. Consider the ”double protection” protocol PRR from the paper [3]
with the following modification. Let a = ER, b = ES, c = EZ , A = iR, B = iS,
C = iZ , and iX be the operation appending the name of X to the message. The
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protocol is PRR = 〈aBa, b〉. Let ΣZ = {a, c, C, c−1, B−1, C−1} and suppose that
x−1x → Λ but not xx−1 → Λ for every encryption or appending operation x.
Thus, only left inverse elements are available.

The actions aBa → b (the legal interaction between principals), B−1B → Λ
(removing the name of the agent S), Λ → c (encryption by the intruder’s key)
can be considered as rules of a prefix rewriting grammar.

There exists a hierarchy of prefix rewriting grammars (called Caucal hierar-
chy) that classifies the grammars by the types of their rewriting rules [5]. The
Caucal hierarchy of the prefix rewriting grammars is presented in the following
table 2.

Type of a grammar Form of rewriting rules
Type 0 Φ→ Ψ
Type 1 1

2 pa→ qΨ
Type 2 a→ Ψ
Type 3 a→ b ∨ a→ Λ

The grammars of the type 2 (and 3) are called alphabetic prefix rewriting
grammars in the original Caucal work since their rules can transform only the
first letter of a word.

The class 1 1
2 is equivalent to the class 0 (so that if some set of words can

be generated by a 0-class grammar then there exists a 1 1
2 -class grammar that

generates exactly the same set of words) and wider than the class 2. The class
2 is wider than the class 3.

The ping-pong protocols are to be represented as 0- or 1 1
2 - prefix grammars.

But if we try to use straightforward representation of a ping-pong protocol as a
0-type grammar, some uncertainties can appear.

Example 4. On the first look, the automaton for the protocol Pa (from the
Example 1) can be rewritten as a 0-type prefix grammar as follows.

GPA:
R1 : Λ→ a−1a−1 R3 : bb−1 → Λ R5 : Λ→ ba
R2 : a−1a→ Λ R4 : b−1b→ Λ R6 : Λ→ b−1

Λ in the left-hand side of a rule means that the rule can be applied to any
word.

In the terms of GPA the question of verification is to find out whether a trace
starting from the initial word ba and ending by Λ exists. These traces represent
attacks on the corresponding protocol; it is unnecessary to construct them all
since the existence of even one means that the protocol is insecure.

2The ”negative” part of the hierarchy (types −2 and −1) is dropped since it is unnecessary
for our protocol model.
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Despite the fact that the grammar GPA looks rather simple, it is incorrect
and generates some non-collapsing words that belong to collapsing paths in the
automaton. For example the word a−1a−1aa is never transformed to Λ because
this demands to transform the infix a−1a before the first letter a−1, and such
actions are forbidden in prefix rewriting grammars.

The well-known way to avoid these difficulties is to use 1 1
2 -type prefix rewrit-

ing grammars [4]. For every rule R : pa → qΨ the letters p and q can appear
nowhere but on the first position of a word. The set of these letters represents
a set of control states in the corresponding automaton. Then it is possible to
force all erasings to be done immediately when they can be done.

Example 5. The 1 1
2 -prefix grammar for the protocol PA can look as follows

([N ] is a single symbol representing a state; the square brackets are introduced
for better readability).

GPA′ :
R1 : [0]x→ [0]bax R4 : [0]b→ [0] R7 : [1]a→ [0]
R2 : [0]x→ [0]a−1a−1x R5 : [0]a→ [1]
R3 : [0]x→ [0]b−1x R6 : [1]x→ [0]a−1x

x denotes an arbitrary letter from Σ. This grammar is non-deterministic
and also can generate non-collapsing words that correspond to the empty word
(for example, after applying R2 to the word a)3. But if there is an attack on the
protocol PA, then the grammar generates some trace ending by Λ that represents
this attack.

The representation as 1 1
2 -type grammars is especially helpful when used to-

gether with the automaton model. But when it is used together with tree un-
folding techniques it can demand some additional work, such as constructing a
control state alphabet and transforming long rewriting rules in the 1 1

2 -form. So
in our investigations we use the equivalent 0-form of the grammars.

3 Ping-Pong Protocols as Prefix Grammars

Consider a ping-pong protocol as a prefix grammar in the following sense. Let
every elementary action be a letter in the initial alphabet of the prefix grammar.
Every action a1a2a3 . . . an corresponding to an iteration from the state 0 to itself
produces the following rewriting rules

3To avoid such cases we must introduce restrictions on x in the rules R2, R3, R6.

105



Ping-Pong Protocols as Prefix Grammars and Turchin Relation A. Nepeivoda

Λ → a1a2 . . . an
a−1n → a1a2 . . . an−1
a−1n a−1n−1 . . . a

−1
1 → Λ

In this interpretation all collapsing rules (of the form aia
−1
i → Λ or

a−1i ai → Λ) can be applied immediately. This does not change properties of
the protocol. The prefix grammar is finite (every loop from the state 0 to itself
of the length k produces not more than k+1 rules). In fact, this grammar repeats
the corresponding 1 1

2 -type prefix grammar presented in the previous section but
does not introduce an auxiliary state alphabet.

Example 6. The automaton for the protocol Pa is represented by the following
0-type grammar of this sort.

GPA0:
R1 : Λ→ ba R4 : b→ Λ
R2 : Λ→ a−1a−1 R5 : a→ a−1

R3 : Λ→ b−1 R6 : aa→ Λ

This grammar allows doing all cancellations as early as possible. It is non-
deterministic as the grammar GPA′ from 5 but contains one rule less because
arbitrary left-hand sides are allowed and the rules R5 and R6 do not need to be
decomposed to the combinations of two rules.

Consider an algorithm unfolding all possible traces of a given prefix grammar
G. This algorithm finds all the attacks on the corresponding protocol if they
exist but almost all traces are infinite so the algorithm does not terminate. In
general-purpose program transformation techniques (for example, supercompi-
lation), that perform such unfoldings, some conditions of when to terminate are
introduced to force termination. These conditions are not perfect because they
are not specified to prefix rewriting systems and can force early terminations
of finite branches (considering them as infinite). In the context of our problem
this means that some collapsing path in an automaton may not be found, and
the task of verification may not be solved soundly by the technique. So the
question raises if the existing termination conditions in, e.g. supercompilation,
fit the verification task of ping-pong protocols in the form of prefix rewriting
grammars, or they need some refinement.

One of the popular conditions of path termination is the Higman–Kruskal
embedding on terms [8]. Now we only define the Higman relation since it operates
with words, as the ping-pong protocols do.
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Definition 4. Given two words in an alphabet Σ, Φ = a1a2 . . . am,
Ψ = b1b2 . . . bn, Φ is embedded in Ψ in the sense of Higman relation (Φ E Ψ) iff
Φ is a subsequence of Ψ. This relation is also called a scattered subword relation.

Example 7. Consider the ”double protection” protocol PRR from Example 3.
Then the prefix grammar for PRR can look as follows.

GRR:
R1 : Λ→ a R4 : aBa→ b R7 : B → Λ
R2 : Λ→ c R5 : aCa→ c R8 : C → Λ
R3 : Λ→ C R6 : c→ Λ

Let the initial word Γ0 be aBa. If we start unfolding until finding a first such
Γ and ∆ that Γ E ∆, then the graph for the grammar can look as follows:

aBa

zz �� $$ **
aaBa b

zz $$ **

caBa CaBa

ab cb Cb

The dot arcs denote the embeddings over E.
No path in this graph reaches Λ. But such path in the whole tree exists: trace

that corresponds to it is

aBa→ CaBa→ aCaBa→ cBa→ Ba→ a→ Ca→ aCa→ c→ Λ.

This path corresponds to the attack on the protocol PRR.

Example 8. Let us unfold all traces of GPA0 (Example 6) until a pair Γ, ∆,
such that ∆ is a descendant of Γ and Γ E ∆, emerges on a branch.

ba

zz �� && ++
baba a

zz �� && ++

a−1a−1ba b−1ba

baa a−1

zz && ++

a−1a−1a b−1a

baa−1 a−1a−1a−1 b−1a−1

All the paths end with Higman pairs and the branch which ends with Λ is lost.
Note that if the rule aa−1 → Λ is allowed then such branch (but not all possible
such branches) is found even by the unfolding with the Higman condition.
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Therefore Higman relation itself is not enough as a termination condition
while working with prefix rewriting grammars that are generated from protocols.
In the next section we consider some other classical termination condition that
reveals some interesting properties of the protocol verification task.

4 Time Indexing and Turchin Relation

Consider a trace {Φi}ni=1 of a prefix rewriting grammar G = 〈Σ,R,Γ0〉. Let us
write it down letter by letter, from the rightmost letter of a word to its leftmost
letter. Let us mark every letter by a natural number denoting the moment when
the letter appeared first (starting from the moment 0). We call this notation
time-indexing and a trace generated by G with the time-indexing notation is
called a computation.

This procedure can be described more formally as follows. The i-th letter of
Φ1 is marked by |Γ0|−i, where |Γ0| is the length of Γ0; if the largest number that
is used as a time index in the track segment {Φi}ki=1 (k < n) is M and Φk+1 is
generated from Φk by the rule R : Rl → Rr then the i-th letter of Φk+1 (i ≤ |Rr|
where |Rr| is the length of Rr) is marked by the time index M + |Rr| − i + 1.
Time indexes of all other letters in Φk+1 remain the same as in Φk, since these
letters are unchanged by R.

The length of a word ∆ is denoted as |∆|. ∆[k] denotes the k-th letter of ∆;
Φ ≈ Ψ iff the words Φ and Ψ coincide up to time indices. The time-indexing
notation allows take into account not only structure of a word but also the
history. The time indices are useful to describe Turchin’s relation on words in
a trace — this relation is more powerful than Higman relation (it permits later
termination of branches).

Example 9. Consider the protocol GRR from the example 7. The first word Γ0

is aBa and should be annotated by the time indices as a(2)B(1)a(0) (we write the
indices in the subscripts, enclosed in brackets). When it is transformed by the
rule R4, the generated word with the time indices is b(3). When it is transformed
then by R1, the generated word is time-indexed as a(4)b(3).

Definition 5. Two words Γ and ∆ form a Turchin pair iff Γ = ΦΘ0,
∆ = Φ′ΨΘ0 and Φ′ ≈ Φ. This fact is denoted as Γ � ∆.

Now the first word must not only be a subsequence of the second but also this
subsequence must contain only one gap and have the special properties of the
time indices. For example if the word Γ = a(i) is transformed to ∆ = b(i+2)a(i+1)

(after an application of the rule a → ba), then the pair (Γ,∆) does not satisfy
Turchin relation, but it satisfies Higman one.
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In 1987 V.F. Turchin proved that the Turchin pairs necessarily appear in
every infinite trace generated by an arbitrary finite type 2 prefix rewriting gram-
mar4. Thus the Turchin relation can be used (and is successfully used [6]) to
terminate unfolding of computations in a computational tree. Our next task is
to investigate for what types of prefix grammars the relation � can help to find
at least one trace that ends with Λ and how to refine the relation to make it
applicable to solve this task for any 0-type prefix grammar.

5 Verification of Ping-Pong Protocols as Prefix
Grammars

Now we introduce the notion of annotated prefix rewriting grammars, which
was described in [7] as a way of removing all occasional Turchin pairs in traces
generated by the 2-type prefix rewriting grammars.

Example 10. Consider the following modification of the grammar GPA0.

GPAC:
R1 : Λ→ ba R4 : b→ Λ R7 : Λ→ bac
R2 : Λ→ a−1a−1 R5 : a→ a−1

R3 : Λ→ b−1 R6 : aa→ Λ

The two rules R1 and R7 are different in essence: an application of the
second leads to impossibility of Λ in the further trace. But if two words Φ and
its descendant Ψ form a Turchin pair, and Ψ is generated directly by R7 from Ψ′

then the word generated from Ψ′ by R1 also forms a Turchin pair with Φ. Thus
� does not separate applications of these two rules because of the same prefix
ba.

To avoid these useless Turchin pairs we can mark the letters of the right-hand
side of a rule by the number of the rule in the whole list of rules and then forbid
unification of the letters with different rule numbers. Such marked grammars
are called annotated.

Definition 6. A prefix rewriting grammar G is annotated if every two rules
either have the same right-hand side or have no letters shared by their right-
hand sides.

Example 11. Let us annotate the grammar GRR (considering Γ0 as R0).

4A formal representation of the theorem in the terms of prefix grammars and a short proof
of it can be found in [7].
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GARR:
R1 : Λ→ a(2) R4 : aBa→ b(1) R7 : B → Λ
R2 : Λ→ c(1) R5 : aCa→ c(2) R8 : C → Λ
R3 : Λ→ C(1) R6 : c→ Λ R0 : Λ→ a(1)B(0)a(0)

The attack now looks as

a(1)B(0)a(0) → C(1)a(1)B(0)a(0) → a(2)C(1)a(1)B(0)a(0) → c(2)B(0)a(0) →
→ B(0)a(0) → a(0) → C(1)a(0) → a(2)C(1)a(0) → c(2) → Λ.

We drop time indices for the sake of brevity. No pairs in this trace are
comparable by � so the corresponding path is to be found during the unfolding.

The transition to annotated grammars leads to a refinement of � that allows
to solve the empty word problem for the type 2 prefix rewriting grammars.

Proposition 1. Let us consider a relation �T such that Γ �T ∆ iff Γ = ΦΘ0,
∆ = Φ′ΨΘ0, and there exists such rule R : Rl → Rr with a non-empty right-
hand side Rr that Φ ≈ Rr and Φ′ ≈ Rr. Every infinite computation generated
by a 0-type prefix grammar contains an infinite subsequence Γ1, . . . , Γn, . . . such
that for all n and i Γn �T Γn+i) and Γn+i is a descendant of Γn.

This proposition can be reformulated in the following way. Let us say that
an application of a rule R : Rl → Rr to RlΘ0 is cancelled in a trace iff Θ0[1]
is modified or erased in the trace. Then every infinite computation by a 0-type
prefix grammar contains infinite subsequence Γ1, . . . , Γn, . . . , such that for all
n and i Γn and Γn+i are generated by the same rule R : Rl → Rr with the non-
empty right-hand side Rr and the application of the R in Γn is not cancelled in
Γn+i.

Note that the usage of �T with the non-annotated grammar GRR allows
to find the trace ending by Λ as well as the usage of � with the annotated
grammar GARR. Moreover, the transition to the annotated grammars (or to
�T instead of �) solves the empty word problem for traces generated by 2-type
prefix rewriting grammars.

Proposition 2. Let G be an annotated the 2-type prefix rewriting grammar. If
there is a computation by G ending with Λ then there is a computation by G
ending with Λ and containing no Turchin pairs.

Proof. The proof follows from the fact that every first Turchin pair in a com-
putation by G satisfies also �T condition. Consider the shortest computation
to Λ that is generated by an annotated alphabetic prefix rewriting grammar.
Suppose it contains a Turchin pair Γ = RrΘ0, ∆ = R′rΨΘ0. If ∆ collapses to Λ
then the trace from ∆ to Λ must contain words ΨΘ0 and Θ0. But this means
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that there exists a way to collapse Rr to Λ and Θ0 to Λ separately, and there is
a shorter computation to Λ from Γ without reaching ∆.

But the strong relation �T does not still solve the whole problem of finding
a finite trace when verifying protocols as prefix rewriting grammars.

Example 12. Let us try the time-indexing notation on the trace representing
the attack on the protocol Pa.

Γ0 : b(1)a(0)

R4
��

Γ2 : b(3)a(2)a(0)

R4
��

Γ4 : Λ

Γ1 : a(0)

R1
44

Γ3 : a(2)a(0)

R6

55

The new a in Γ3 is marked by the index (2) because (1) is used with the first
b which collapses in Γ1.

Even using the most powerful relation �T in the example we cannot avoid
the embedding b(1)a(0) �T b(3)a(2)a(0) which leads to the loss of attack. The
bottleneck is that GPA0 is the 0-type prefix rewriting grammar. And the anno-
tation of a grammar helps to express (and eliminate) dependencies only between
the right-hand sides of rules. If a grammar is the 2-type then all the rules with
the empty right-hand sides look as x → Λ and thus every letter can be erased
independently. But if we have any dependence between the erasings, we can-
not express or eliminate it by the simple annotating. Exactly this happens in
GPA0: the rule aa → Λ assumes that we erase the first and the second a only
together, but both of them can be generated only by the same rule Λ → ba,
which produces the essential Turchin pair.

Definition 7. Let x be a letter that appears in the right-hand side of a rule of
a given grammar. Its erasing counter is the number of the occurrences of x in
the different left-hand sides.

Thus, for a in GPA0 the erasing counter is 3, and for b is 1.

Example 13. Consider the grammar GARR from Example 11. c(i) is to be
erased by the single rule R6 and has the erasing counter 1, a(i) can be erased
either by R4 or R5 and has the erasing counter 4, since in the both rules there
are two occurrences of a in the left-hand sides.

Every letter in a 2-type prefix grammar has the erasing counter either 0 (if
the letter cannot be erased, as c in GPAC from Example 10) or 1.
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Definition 8. Let us say that Γ �! ∆ (or forms with ∆ a Turchin pair with
erasing distinction) iff Γ �T ∆ and for some x ∈ Σ the number of the occurrences
of x in ∆ is greater than the erasing counter of x.

Proposition 3. Let G be a finite annotated prefix rewriting grammar. Every
infinite trace generated by G either contains some Γ and ∆, such that Γ ≈ ∆,
or contains Γ and ∆, such that Γ �! ∆.

Proof. Since there is an infinite sequence Γ1, . . . , Γn, . . . , such that for all i,
n Γn �T Γi+n, there exists a rule R : Rl → Rr with Rr 6= Λ, that is applied
infinite many times to generate all of the Γi. Then the two situations can appear.
Either there is an infinite number of Γi such that they all coincide up to the time
indices, or there is a strictly growing (by the length) infinite subsequence {Γn1}.
Since the alphabet is finite, there exists such element Γj1 from this subsequence.
that some letter from Σ repeats itself in Γj1 more times than its erasing counter
is. The pair Γ1 and Γj1 satisfies the �! relation.

Proposition 4. Let G be an arbitrary finite annotated prefix rewriting grammar
of the type 0. If there is a computation by G that ends with Λ then there is a
computation by G that ends with Λ and contains no Turchin pairs with erasing
distinction.

Proof. Let the shortest computation of Λ contain a Turchin pair with erasing
distinction, so there are such Γ and ∆ that Γ �! ∆. Let a be a letter that is to
be erased twice by the same rule. Consider the immediate moments before the

erasings. They must look like R̂laΨaΘ0 and R̂l
′
aΘ0, where R̂l denotes a prefix

of the left-hand side of some rule. Now consider the moments in which a were
generated. They must look like R̂′raΘ0 and R̂′raΨaΘ0 respectively and form the
pair in respect of �!.

All the considered moments together form the following sequence.
. . .
R̂′raΘ0

. . .
R̂′r
′
aΨaΘ0

. . .
R̂laΨaΘ0

. . .
R̂l
′
aΘ0

. . .
Λ
Now we can apply to R̂′raΘ0 the same transformations as in the segment

from R̂′r
′
aΨaΘ0 to R̂laΨΘ0 and get a shorter computation to Λ.
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Proposition 4 together with the proposition 3 gives a sound condition of when
to terminate a computation if we want to find the shortest finite computation
path. If some two words that are comparable over �! or over ≈ appear, then we
can stop unfolding the computation that contains them. All infinite computa-
tions contain such pairs, so we cannot diverge when unfolding until them.

The proposition 4 implies an obvious observation that if there a rule with
a letter in the right-hand side that have the erasing counter 0 is applied in a
computation then the computation contains no Λ. Moreover, the proposition 2
is a straight consequence of the lemma 4 if none letters in rules with non-empty
right-hand sides have erasing counters greater than 1.

6 Modelling Long Attacks via Refined Turchin
Relation

Now when we know the test of branch termination for finding attacks, the ques-
tion of maximal attack length arises. The work [7] describes how to build maxi-
mal trace with no Turchin pairs in it. But this trace is not necessarily a minimal
trace ending with Λ.

Example 14. Consider the annotated grammar from [7]. Remind that R0 co-
incides with the initial word Γ0. x denotes an arbitrary letter from
Σ = {a, b, c, d, e, f, g}.

G′F:
R0 : x→ ab R2 : x→ ef
R1 : x→ cd R3 : x→ g
R4 : x→ Λ

The longest trace of this grammar without the Turchin pairs has the length
22. However, the shortest attack has the length 3: it is enough to apply rule R4

twice to the initial a(1)b(0) to receive Λ.

Now our task is not only to build the longest possible trace with no Turchin
pairs but to build a grammar with a long shortest possible trace ending by Λ
(in particular, this means it contains no pairs in respect of �! but very likely
contains some pairs in respect of �T ). We use the same idea of the ”ladder”
construction as in [7] to show that it is possible to construct a grammar with
a minimal trace ending by Λ such that it repeats the ”ladder” constructions as
well as contains pairs over �T .
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Example 15. In the following grammar GEXP the shortest trace ending by Λ
has the length 80 (see Appendix).

GEXP:
R1 : Λ→ aA R4 : Ba→ bB R7 : BB → cC
R2 : Λ→ bB R5 : AA→ bB R8 : c→ Λ
R3 : Λ→ cC R6 : Cb→ cC R9 : CC → Λ

7 Conclusion

We described a way to verify some class of ping-pong protocols via unfolding
techniques and prefix rewriting grammars. Now we considered not only the
2-type rewriting grammars but grammars of the type 0 of Caucal hierarchy.
We showed that the condition of path termination with respect of �! cannot
be replaced by �T or weaker conditions (such as Higman relation) and how
a grammar with a small number of rules can generate a long minimal finite
computation. Thus the question of how to verify systems described by the 0-
type prefix rewriting grammars via computational tree unfolding is answered in
general.

This shows that the field of applications of the Turchin relation is much
wider than function stack embeddings, as in the original work. Annotation and
erasing distinction can be a reliable method of avoiding too early termination of
unfolding, but for many special classes of systems it would be more efficient to
use not �! itself but its generalizations or restrictions that are more relevant to
the class.
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A The Long Attack on GEXP

The long trace ending by Λ generated by GEXP with the initial word aA.

1 aA cCBBA cCbBAA bB
2 bBaA CBBA CbBAA cCbB
3 cCbBaA cCCBBA cCBAA CbB
4 CbBaA CCBBA CBAA cCB
5 cCBaA BBA cCCBAA CB
6 CBaA cCA CCBAA cCCB
7 cCCBaA CA BAA CCB
8 CCBaA cCCA bBBAA B
9 BaA CCA cCbBBAA bBB
10 bBA A CbBBAA cCbBB
11 cCbBA aAA cCBBAA CbBB
12 CbBA bBaAA CBBAA cCBB
13 cCBA cCbBaAA cCCBBAA CBB
14 CBA CbBaAA CCBBAA cCCBB
15 cCCBA cCBaAA BBAA CCBB
16 CCBA CBaAA cCAA BB
17 BA cCCBaAA CAA cC
18 bBBA CCBaAA cCCAA C
19 cCbBBA BaAA CCAA cCC
20 CbBBA bBAA AA CC
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We present a transformational approach to program verification and software
model checking that uses three main ingredients: (i) Constraint Logic Program-
ming (CLP), (ii) metaprogramming and program specialization, and (iii) proof
by transformation. (i) Constraints are used for representing in a compact way
(finite or infinite) sets of values or memory states, and logic is used for express-
ing properties of program executions [2, 4, 5]. The least fixpoint semantics and
negation allow us to denote both the least models and the greatest models of
programs, and thus to reason about the (finite or infinite) behaviour of pro-
grams. (ii) Metaprogramming is used for getting a verification technique which
is parametric with respect to the programming language in use. In particular,
we introduce a CLP program I which defines the (meta)interpreter of the pro-
gramming language in which the program P to be verified is written. Then, in
order to gain efficiency, we remove this interpretation layer by specializing the
interpreter I with respect to the given program P [1, 6, 7]. The property ϕ that
should be proved (or disproved) about program P , is expressed through the CLP
clauses that characterize the set of states in which ϕ holds (or does not hold,

respectively). (iii) Having derived a CLP program P̃ whose semantics represents
the behaviour of the given program P and the property ϕ to be verified, we start
a third phase which consists in the proof by CLP program transformation. This
transformation is performed by using unfold/fold rules and also some general-
ization and goal replacement rules which all preserve the semantics [8]. By the
generalization rule [3] one can derive the invariants which hold during program
execution and are needed to verify the given property. Rules are applied ac-
cording to some strategies with the objective of deriving from program P̃ a new
CLP program P̃1 so that a selected atom, say prop, either belongs to P̃1 (in

which case ϕ holds) or no clause for prop belongs to P̃1 (in which case ϕ does
not hold). We have designed a few (semi)automatic strategies which make the
transformation process to terminate. Obviously, they are all incomplete due to
undecidability limitations, but they work well on many non-trivial examples.
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The bar for adoption of refactoring tools is high: not only does a refactoring
extract information from your source code, it also transforms it, often in a radical
way.

After discussing what users require from their tools, we will examine ways in
which tool builders can try to increase their users’ confidence in the tools. These
mechanisms include visualisation, unit testing, property-based testing and veri-
fication, and are based on the Kent functional programming group’s experience
of building the HaRe and Wrangler refactoring systems for Haskell and Erlang.
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